Santec 的企业理念是通过光学技术的创新为世界提供新价值。我们开发、制造并向光传输设备制造商销售光通信组件。我们还为光学测量、光学处理和光学信息处理领域提供采用 LCOS 技术的空间光调制器。
• 任务:Eagle-1、OPS-SAT VOLT、INT-UQKD、QKDSat、SAGA 和 EuroQCI +、QGS 基础设施 • Scylight 工作计划和行业发起项目下的技术开发 • 利用与传统光通信、LCT、OGS 的协同作用 • 在欧洲创建空间量子技术卓越中心或研究实验室
IEEE 光子技术快报 (PTL) 将出版一个专题部分,专门报道在 2024 年 6 月 21 日至 23 日在中国重庆举行的国际智能计算与无线光通信会议 (ICWOC) 上发表的高质量投稿和受邀演讲的扩展版本。ICWOC 2024 的主要主题是光无线通信 (OWC),它是一种利用光波作为载体传输数据以进行通信和其他目的的技术。由于其丰富且免授权的光谱、高传输容量、对电磁干扰的鲁棒性和固有的物理层安全性等优势,OWC 被广泛视为 6G 的关键支持技术。OWC 在自由空间、室内、水下、车载和卫星场景中的许多令人兴奋的应用方面展现出巨大潜力。然而,OWC 系统的实际部署仍然面临许多挑战,例如带宽限制、链路阻塞、不利的信道条件等。本期特刊的主题包括但不限于以下内容:自由空间光通信、可见光通信、水下 OWC、车辆 OWC、卫星 OWC、可见光定位、光集成通信与传感、OWC 数字信号处理、OWC 机器学习、用于同时数据传输和能量收集的 OWC。鼓励基础研究和应用相关的贡献。提交于 2024 年 9 月 1 日开始,稿件提交截止日期为 2025 年 1 月 1 日。出版计划于 2025 年 4 月出版。提交应在 IEEE 作者门户网站上在线进行:https://ieee.atyponrex.com/journal/ptl-ieee,论文格式符合 4 页 IEEE PTL 标准。所有提交的内容将按照期刊的正常程序进行审查。
应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
Media Lario 生产高规格光学元件和系统,用于太空和陆地天文学、卫星对地观测和自由空间光通信等应用。该公司采用获得专利的 Repli-formed Optics™ 工艺,这是一种产量极高、可复制性极高的制造方法,适用于大批量应用。
过去几年,自由空间光通信 (FSO) 已成为射频通信的可行替代方案。它提供了一种有前途的高速点对点通信解决方案。然而,大气吸收、散射和湍流会显著降低无线光通信,从而降低设备效率。由于上述大气原因导致的信号衰减是影响设备效率的另一个主要因素。观察到大气湍流条件被实施到不同的 FSO 系统模型中,例如单输入单输出 (SISO)、多输入多输出 (MIMO)、波分复用 MIMO (WDM-MIMO) 和出于各种原因使用 Gamma-Gamma 模型的提议模型双多输入多输出 (DMIMO)。使用 OptiSystem 7.0 软件进行模拟,以研究各种天气条件(晴天、霾天和雾天)如何影响信道的性能。模拟结果表明,为 FSO 系统实施双多输入多输出 (DMIMO) 技术可为各种范围提供高质量因数,同时仍在接收器端实现准确的传输数据。在晴空、霾和雾等大气湍流条件下,信号功率水平、质量因数和链路距离范围的性能改善已得到证实。
■ 基于光子晶体平台的全光半减器和全减器的最新进展 Fariborz Parandin、Saeed Olyaee、Farsad Heidari、Mohammad Soroosh、Ali Farmani、Hamed Saghaei、Rouhollah Karimzadeh、Mohammad Javad Maleki、Asghar Askarian、Zahra Rahimi、Arefe Ehyaee 《光通信杂志》,第 0314 卷,第 1-30 页,2024 年
[1] M. Dimian、L. Chassagne、P. Andrei、P. Li,“用于车辆安全和驾驶辅助的智能技术”,先进交通杂志,2019 年卷,文章 ID:1980363,编辑,(2019),ISI 影响因子 1.983 [2] M. Dimian、A. Căilean、A. Done. S. Vlad、P. Andrei,“用于汽车应用的带有自适应滞后电路的可见光通信传感器”,Physica B – Condensed Matter,第 549 栏,第 31-34 页 (2018),ISI 影响因子 1.874 [3] A. Cailean、M. Dimian,“当前车辆应用中可见光通信使用的挑战:调查”,IEEE 通信调查和教程,第 19 (4) 卷,第 19 (4) 页。 2681-2703 (2017),ISI 影响因子 22.973 [4] A. Cailean、M. Dimian,“IEEE 802.15.7 标准对汽车应用中可见光通信使用的影响”,IEEE Communications Magazine,第 55 卷 (4),第 169-175 页 (2017),ISI 影响因子:10.435 [5] A. Cailean、M. Dimian,“面向汽车应用的环境自适应可见光通信接收器:综述”,IEEE Sensors Journal,第 16 卷,第 9 期,第 2803-2811 页,2016 年,ISI 影响因子:1.762。 [6] A. Cailean、M. Dimian、L. Chassagne、B. Cagneau 和 V. Popa,“用于汽车应用中多通道可见光通信的新型 DSP 接收器架构”,IEEE Sensors Journal,第 16 卷,第 10 期,第 3597-3602 页,2016 年,ISI 影响因子:1.762 [7] I. Gudyma、V. Ivashko 和 M. Dimian,“压力对自旋交叉固体材料磁滞的影响”,Physica B – Condensed Matter,第 16 卷,第 10 期,第 3597-3602 页,2016 年,ISI 影响因子:1.762 486,第 40-43 页,2016 年。ISI 影响因子:1.319 [8] I. Gudyma、A. Maksymov、M. Dimian,“自旋交叉噪声驱动系统的滞后行为”,Physica B – Condensed Matter,第 486 卷,第 44-47 页,2016 年。ISI 影响因子:1.319 [9] A. Cailean、B. Cagneau;L. Chassagne;M. Dimian;V. Popa,“用于汽车应用中可见光通信的新型接收传感器”,IEEE Sensors Journal,第 15 卷,第 8 期,第 4632-4639 页,2015 年,ISI 影响因子:1.762。[10] M. Dimian、Andrei, P.;Mehta, M.; Idubor,OA,“磁性多层材料的热弛豫