图 1 使用基于祖先的疫苗和变体修饰的疫苗加强接种的汇总中和数据。(A)使用基于祖先的疫苗加强接种后中和滴度的倍数变化。不同测试变体的滴度变化以不同的颜色表示。(B)与基于祖先的疫苗相比,使用变体修饰的疫苗加强接种时中和滴度有所改善(显示为倍数增加)。在体外针对祖先 SARS-CoV-2 变体进行测试(左)和在体外针对其他变体进行测试(右)时均显示出改善。(C)与基于祖先的疫苗相比,使用变体修饰的疫苗加强接种后中和滴度的倍数增加,具体取决于体外测试的变体是否与疫苗免疫原匹配(红色,左)或不匹配(蓝色,右)。对于图 B 和 C,对 log10 转换值进行了 t 检验。
Abdala 是一种由毕赤酵母生产的 COVID-19 疫苗,基于 SARS-CoV-2 刺突的受体结合域 (RBD)。Abdala 目前已获准在多个国家使用,临床试验证实了其在预防重症和死亡方面的安全性和有效性。尽管毕赤酵母被用作基于蛋白质的疫苗的表达系统,但酵母糖基化在免疫原中仍然基本未被表征。在这里,我们表征了 N-糖结构及其在 Abdala 上的附着位点,并展示了与等效的哺乳动物衍生 RBD 相比,酵母特异性糖基化如何降低与 ACE2 受体和受体结合基序 (RBM) 靶向抗体的结合。受体和抗体结合的减少归因于 N-糖基化导致的构象动力学变化。这些数据强调了糖基化在疫苗设计中的关键重要性,并展示了单个糖如何通过蛋白质结构动力学影响宿主相互作用和免疫识别。
2. 背景 IAVI 是一家非营利性科学研究组织,致力于解决紧迫的、未得到满足的全球卫生挑战,包括艾滋病毒、结核病和新发传染病。我们的使命是将科学发现转化为负担得起的、全球可获得的公共卫生解决方案。通过在非洲、印度、欧洲和美国开展科学和临床研究,IAVI 率先开发旨在广泛全球使用的生物医学创新。我们在发展中国家开发疫苗和抗体,并寻求通过促进学术界、工业界、当地社区、政府和资助者之间的独特合作来加速科学发现和发展,探索新的和更好的方法来应对严重影响贫困人口的公共卫生威胁。我们的全球影响力,包括撒哈拉以南非洲和印度等五个国家的临床研究网络,使我们能够为了解艾滋病毒的流行病学、传播、病毒学和免疫学做出根本性贡献。这项工作在促进有前景的艾滋病毒疫苗免疫原的设计以及广泛中和抗体 (bNAbs) 的发现方面发挥了关键作用,目前这些抗体正在被推进作为潜在的艾滋病毒预防产品。
产品信息材料编号:562958替代名称:SPN;唾液磷脂; leukosialin; LY-48; ly48; galgp; LEUK大小:50 µg浓度:0.2 mg/ml克隆:S7免疫原:小鼠浆细胞瘤MOPC-315同种型:大鼠(DA X Lou)IgG2A,κQC测试:鼠标反应性:存储缓冲液:含有BSA和≤0.099%sodiuiuiuiuiuiuiuiuiuiuium a Zide a Zide sodiuiuiuium a Zide soperitive:Storage Reactivity:Storage Buffer:描述S7单克隆抗体特异性结合了CD43的115 kDa糖基化形式(LY-48,leukosialin)。CD43 is expressed on IL-7-responsive pro-B cells, plasma cells, peritoneal and splenic CD5+ B cells (B-1 cells), granulocytes, monocytes, macrophages, platelets, natural killer cells, thymocytes, peripheral T cytotoxic/suppressor cells, and most T helper cells, but not resting conventional peripheral B cells.CD43表达也已在骨髓中多能造血干细胞和髓样,淋巴样和NK细胞祖细胞上检测到。CD43缺陷小鼠的研究表明,CD43参与T细胞激活和粘附的负调控。
补充图 S5。olslc38a4 (SAT) 的消除对青鳉幼虫表型、上皮 Na + 通量和蛋白质表达的影响。 (A),青鳉 Sat 与商用抗 SLC38A4 抗体免疫原肽(针对人类 SLC38A4 的合成肽;序列同源性:74%;ab58785;Abcam Cambridge,英国)的推断序列比对。Western blot 分析 SAT 消除对 Sat 变体蛋白质表达的影响。分别应用了 6 dpf 青鳉幼虫匀浆(从 FW 中的野生型、20‰ SW 中的野生型和 20‰ SW 中的 Sat 变体中收集),并表明商用抗 SLC38A4 抗体可以检测到来自不同青鳉幼虫样本的蛋白质,预期分子量大小约为 56 KDa。 (B) 野生型 (Wt) 和 1 ng SAT MO 注射青鳉胚胎在 20‰ SW 条件下的光学显微镜图像。 (C) 淡水 (FW) 环境下,与野生型和假对照青鳉幼体相比,SAT MO 注射对 6 dpf 青鳉幼体 Na + 通量的影响。值以平均值 ± SD 表示,并使用 Student's t 检验进行比较。当 p < 0.05 时,认为存在显著差异。
摘要:在这项研究中,开发了高度敏感的单克隆抗体(MAB),用于玉米和饲料中黄曲霉毒素B 1(AFB 1)的分解。还建立了间接竞争性酶联免疫吸附测定(IC-ELISA)和时间分辨荧光免疫测定法(TRFICA)。首先,合成了HAPEN AFB 1 -CMO,并与载体蛋白共轭,以制备用于小鼠免疫的免疫原。随后,使用Classical杂交瘤技术产生mAb。IC-ELISA的最低半最大抑制浓度(IC50)为38.6 ng/kg,线性范围为6.25–100 ng/kg。玉米和饲料中检测的极限分别为6.58 ng/kg和5.54 ng/kg,回收率范围从72%到94%。从样本处理到阅读,开发了TRFICA的检测时间仅大幅减少21分钟。此外,玉米和饲料的检测限度分别为62.7 ng/kg和121 ng/kg。线性范围为100–4000 ng/kg,回收率范围从90%到98%。总而言之,AFB 1 MAB的开发和用于高通量样品检测的IC-ELISA以及用于快速检测的TRFICA的IC-ELISA提出了可用于多功能AFB 1在不同情况下检测的强大工具。
摘要:成簇的规律间隔短回文重复序列 (CRISPR) 基因组编辑系统因其出色的靶向和编辑 DNA 序列的能力而成为过去十年来深入研究的焦点。CRISPR-Cas 系统在体内基因组编辑中的适用性为未来的体内基因治疗赢得了巨大赞誉。在 CRISPR-Cas 系统可用于临床之前,需要解决诸如靶向错误组织、不良基因突变或免疫原性反应等挑战。因此,该领域显然缺乏一种策略来增强 CRISPR-Cas 基因编辑系统在体内应用中的递送特异性。目前使用病毒载体的方法无法解决这些主要挑战,因此,正在探索开发非病毒递送系统的策略。肽基系统是一种有吸引力的基因治疗开发方法,因为它们具有靶向特异性、扩大潜力、缺乏免疫原性反应和抗蛋白水解性。在这篇综述中,我们讨论了最近在新型非病毒递送系统方面的努力,重点关注基于肽的递送系统的策略和机制,该系统可以专门将 CRISPR 成分递送到不同类型的细胞以用于治疗和研究目的。
1 埃默里大学耶基斯国家灵长类动物研究中心,美国佐治亚州亚特兰大,2 斯克里普斯研究所斯克里普斯艾滋病毒/艾滋病疫苗免疫原开发中心 (CHAVD),美国加利福尼亚州拉霍亚,3 埃默里大学医学院埃默里疫苗中心,美国佐治亚州亚特兰大,4 拉霍亚免疫学研究所 (LJI) 传染病和疫苗研究中心,美国加利福尼亚州拉霍亚,5 埃默里大学医学院微生物学和免疫学系,美国佐治亚州亚特兰大,6 华盛顿大学医学院病理学和免疫学系,美国密苏里州圣路易斯,7 斯克里普斯研究所免疫学和微生物学系,美国加利福尼亚州拉霍亚,8 斯克里普斯研究所综合结构和计算生物学系,美国加利福尼亚州拉霍亚,9麻省理工学院和哈佛大学拉根麻省总医院研究所,美国马萨诸塞州剑桥市,10 加利福尼亚大学圣地亚哥分校医学系传染病和全球公共卫生分部,美国加利福尼亚州拉霍亚市,11 宾夕法尼亚大学佩雷尔曼医学院微生物学系,美国宾夕法尼亚州费城
COVID-19 疫情正在影响全球数十亿人的生命。与此同时,全球各地的实验室都在加紧开发小分子药物、抗体和疫苗,以对抗 SARS-CoV-2 病毒。虽然针对该病毒的抗体可能会相对较快地问世,但疫苗可能需要更长的时间,而且小分子药物的可用性也更加不确定。然而,大多数人都认为,解决病毒问题最经济实惠的长期解决方案是开发一种安全有效的疫苗。这种疫苗的开发可能很简单,可能仅基于抗体,只需要将表面 S 蛋白作为重组分子、遗传构建体或从合适的病毒载体表达来呈现,即可诱导长效保护性抗体反应。开发也可能会遇到障碍,要求在免疫原和免疫策略的设计上更加复杂。作为可能遇到的障碍的一个例子,呼吸道合胞病毒 (RSV) 疫苗的开发已经推迟了 50 多年,根本原因是缺乏对呈现给免疫系统的表面 F 糖蛋白的适当构象的了解,这一问题直到最近才从详细的分子数据中得到解决。即使一种简单的方法对 SARS-CoV-2 疫苗有效,理想情况下,我们希望开发一种能够包含多种 betacoronaviruses 或至少 sarbecoviruses 的疫苗(即“泛冠状病毒”疫苗)。
摘要:自 20 世纪 70 年代末诞生以来,RNA 疗法经历了显著的发展,为治疗以前难以治愈的疾病提供了新的可能性,从而彻底改变了医学。该领域涵盖多种方式,包括反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA) 和信使 RNA (mRNA),每种方式都有独特的机制和应用。1978 年,人们发现合成寡核苷酸可以抑制病毒复制,从而奠定了该领域的基础,随后又在 1998 年发现了 RNA 干扰等关键进展。COVID-19 大流行标志着一个关键的转折点,展示了 mRNA 疫苗的潜力,并加速了人们对基于 RNA 的方法的兴趣。然而,仍然存在重大挑战,包括稳定性问题、向靶组织递送、潜在的脱靶效应和免疫原性问题。化学改性、输送系统和人工智能技术集成方面的最新进展正在解决这些挑战。该领域取得了显著的成功,例如脊髓性肌萎缩症和遗传性转甲状腺素介导的淀粉样变性治疗已获批准。展望未来,RNA 疗法有望成为个性化医疗方法,特别是在治疗遗传疾病和癌症方面。在技术创新和对 RNA 生物学的深入了解的推动下,该领域的持续发展表明其将对未来的医学治疗产生变革性影响。本综述旨在全面概述 RNA 疗法的发展、现状和前景。