本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。
直线加速器相干光源 X 射线自由电子激光器是一种复杂的科学仪器,每天会多次更改配置,因此需要快速调整策略来减少连续实验的设置时间。为此,我们采用贝叶斯方法通过控制四极磁铁组来最大化 X 射线激光脉冲能量。高斯过程模型为机器响应提供了相对于控制参数的概率预测,从而在寻找全局最优时实现了探索和利用的平衡。我们表明,可以从存档的扫描中学习模型参数,并且可以从光束传输中提取设备之间的相关性。结果是一个样本高效的优化程序,结合了历史数据和加速器物理知识,大大优于现有的优化器。
近年来,人们已经见证了使用元启发式算法来解决通常需要大量计算和时间的优化问题。其中,散射搜索是广泛使用的进化元启发式算法。它使用全局最优信息,该信息存储在不同的唯一解决方案集中。本文对散射搜索 (SS) 进行了更新的回顾。SS 已成功应用于各种研究问题,即数据挖掘、生物信息学和工程设计。本文介绍了 SS 的修改版和混合版及其应用。讨论了控制策略以展示它们对 SS 性能的影响。还讨论了与 SS 相关的各种问题和未来方向。它激励创新研究人员将该算法用于他们的研究领域。
问题,使用局部优化技术通常不足以解决此类问题。搜索受初始点的影响很大,并且不能保证全局最优。 B.全局优化 最近,更复杂的方法集中在全局优化上,即在所有可行邻域中搜索最小的目标值。设计了各种各样的全局优化方法,未来很多年还会引入更先进的技术或方法。 1975 年首次提到全局优化 [ 2 ]。现在几十年后,优化问题已经成熟,一些旨在解决某些问题的方法效果最好。因此,在本实验中,我们将比较多种不同的方法。 III.文献综述 A.遗传算法 计算机模拟进化是一个想法,由 Barricelli 于 1954 年付诸实践,就在艾伦图灵提出具有学习能力的机器四年后。[ 3 ] 遗传算法 (GA) 这个名字本身来自于它模仿进化生物学技术的事实。
摘要:化工厂的盈利能力与其可靠性直接相关,可靠性一直是化学工业关注的重点。本文解决空气分离装置概念设计阶段的问题,以尽量减少负收入,其中包括管道供应中断造成的损失以及提高可靠性的成本,包括拥有冗余单元和储罐。提出了一种基于马尔可夫链假设的混合整数线性规划 (MILP) 模型 (表示为 RST),并将其应用于空气分离装置的激励示例。此外,为了解决更大的上层结构,我们提出了一种博弈论算法,该算法将问题分解和重构为各个处理阶段的团队博弈,并在它们之间达到纳什均衡。结果还表明,可以轻松获得接近全局最优的良好初始化点,从而保证纳什均衡解的质量。通过大量示例说明,所提算法能够以比原始 MILP 模型 (RST) 的直接解决方案更短的时间解决全局最优问题。
分布式集成模块化航空电子设备 (DIMA) 是飞机航空电子设备中一个很有前途的概念。飞机系统共享资源,如计算能力、内存和传感器/执行器接口。资源由通用设备提供,这些设备可以安装在飞机的分布式位置。然而,由于规模和复杂性,如果手动进行,有效和最佳地设计此类系统是一项艰巨的任务。通过将架构设计的子任务作为数学优化问题来解决,展示了如何支持这项艰巨的任务。软件映射和设备安装的分配问题都被表述为二进制整数程序。这些用于优化航空电子架构的全部或部分,以实现某些目标,例如质量和运营中断成本,同时考虑所有资源和次要系统要求。提出了一种合适的全局最优求解器来解决由此产生的组合优化问题,这些问题在复杂性和规模上都具有挑战性。通过由四个冗余飞机系统组成的参考架构展示了所提出方法的潜力。与手动映射相比,这揭示了高达 45% 的优化潜力,而计算时间保持在一分钟以下。
本文针对配电网中车载移动电池储能系统 (MBES) 车队的日常运行提出了一种新的调度模型。配电网安装了各种风能和光伏分布式资源,其中一部分可再生能源发电能力由于各种技术原因而被削减。MBES 车队调度模型旨在通过在需要的时间和地点吸收和释放过剩能源来最大限度地减少可再生能源的削减。因此,通过 MBES 车队的最佳时空和电力能源调度来恢复可变的空间和时间可再生能源发电削减。有效考虑了 MBES 单元运输所需的运输时间,包括拆卸、移动和连接。此外,还通过新公式对 MBES 运输成本进行了详细分解和建模。提出的 MBES 车队运营模型可以轻松集成到可用的商业配电最佳功率流包中。考虑到线性,该模型可以通过实现全局最优来处理非常大规模的实际网络,而不会出现收敛问题。该模型经过数值测试,模拟结果证明了该模型能够有效地回收相当一部分被削减的可再生能源,而与资源类型、发电时间段或安装位置无关。
摘要:在智能电网中,将多种可再生能源 (RES) 与存储和备用系统相结合的混合可再生能源系统可以提供最具成本效益和稳定的能源供应。然而,最近研究解决的最紧迫问题之一是如何最好地设计混合可再生能源系统的组件,以尽可能低的成本和最佳的可靠性满足所有负载要求。由于混合可再生能源系统的优化难度,找到一种提供可靠解决方案的有效优化方法至关重要。因此,在本研究中,优化了微电网之间的电力传输,以最大限度地降低整个系统和每个微电网的成本。为此,人工蜂群 (ABC) 被用作优化算法,旨在最大限度地降低微电网外部的成本和电力传输。ABC 算法优于其他基于种群的算法,并且具有需要更少控制参数的额外优势。ABC 算法还具有良好的弹性、快速收敛和强大的通用性。本研究进行了多项实验,以证明所提出的基于 ABC 的方法的有效性。模拟结果表明,所提出的方法是一种有效的优化方法,因为它可以以非常简单且计算效率高的方式实现全局最优。
基于上述数据可视化平台,研究了数据的外在表现形式,在接下来的工作中,尝试去理解数据内部隐藏的信息。设计了一种基于支持向量回归(SVR)的短期负荷预测方法,为网络重构提供更高精度的负荷预测。利用二阶锥程序(SOCP)将三相平衡最优潮流的非凸性放宽为最优潮流(OPF)问题。采用交替方向乘子法(ADMM)以分布式方式计算最优潮流。考虑到配电系统的现实情况,构建了一个三相不平衡配电系统,该系统包括变电站层面的小时运行计划和馈线层面的分钟潮流运行。在变电站层面最小化含可再生能源系统的运行成本。用机会约束模拟可再生能源发电的随机分布模型,并用高斯混合模型 (GMM) 和基于遗传算法的期望最大化 (GAEM) 建模导出的确定性形式。在实时 (RT) 调度中,使用 OPF 进一步降低系统成本。半正定规划 (SDP) 用于将三相不平衡配电系统的非凸性放宽为凸问题,这有助于实现全局最优结果。以并行方式,ADMM 实现了在短时间内获得结果。
我们提出了一种高效且可扩展的分区方法,用于将具有局部密集和全局稀疏连接的大规模神经网络模型映射到可重构的神经形态硬件上。计算效率的可扩展性,即实际计算所花费的时间,在超大型网络中仍然是一个巨大的挑战。大多数分区算法还难以解决网络工作负载的可扩展性问题,即寻找全局最优分区并有效地映射到硬件上。由于通信被视为此类分布式处理中最耗能和最耗时的部分,因此分区框架针对计算平衡、内存高效的并行处理进行了优化,目标是低延迟执行和密集的突触存储,并尽量减少跨各个计算核心的路由。我们展示了高度可扩展且高效的分区,用于连接感知和分层地址事件路由资源优化的映射,与随机平衡分配相比,递归地显着减少了总通信量。我们展示了我们在具有不同稀疏度和扇出度的合成网络、小世界网络、前馈网络和果蝇大脑半脑连接组重建方面的成果。我们的方法和实际结果的结合表明,这是一条有希望扩展到超大规模网络和可扩展硬件感知分区的途径。