量子安全直接通信(QSDC)可以利用量子力学的特性保证信息在不使用密钥的情况下直接通过量子信道传输时的安全性。然而,QSDC的传输速率受到单光子探测器(SPD)的死时间和长距离信道损耗的限制。为了克服这种有限的传输速率,我们提出了一种基于高维单光子的QSDC协议,该协议应用了两个光学自由度:时间和相位状态。首先,提出了一种考虑死时间的N维时间和相位状态生成方法,以最小化传输信息的测量损失。其次,在两类量子态中,测量效率相对较低的相位状态仅用于窃听检测,时间状态用于使用差分延迟时间基于二进制的编码技术发送信息。最后,我们提出了一种有效的方法来测量N维时间和基于相位的量子态并恢复经典比特信息。本研究对各种攻击进行了安全性分析,并通过仿真验证了传输速率的提升效果。结果表明,与传统的DL04 QSDC相比,我们的方案可以保证更高的安全性和传输速率。
随着理论和应用技术的进步,基于经典加密的通信系统受到量子计算和分布式计算的严重威胁。为了抵御安全威胁,一种将机密信息直接加载到量子态上的通信方法——量子安全直接通信(QSDC)应运而生。本文报告了第一个连续变量QSDC(CV-QSDC)实验演示,以验证基于高斯映射的CV-QSDC协议的可行性和有效性,并提出了一种实际信道下信号分类的参数估计。在我们的实验中,我们提供了4×10 2 个块,每个块包含10 5 个数据用于直接信息传输。对于我们实验中5 km的传输距离,过剩噪声为0.0035 SNU,其中SNU表示散粒噪声单位。4.08×10 5 bit/s的实验结果有力地证明了光纤信道下CV-QSDC的可行性。提出的基于参数估计的等级判断方法为实际光纤通道中的CV-QSDC提供了一种实用、可用的消息处理方案,为等级协调奠定了基础。
摘要 基于纠缠的量子安全直接通信(QSDC)可以直接传输机密信息,然而无法同时区分四组编码纠缠态限制了其实际应用。本文探索了一种基于时间 - 能量纠缠和和频产生的 QSDC 网络。全连通的 QSDC 网络中共有 15 个用户,任意两个用户共享的纠缠态保真度均>97%。结果表明,任意两个用户在 40 km 光纤上进行 QSDC 时,他们共享的纠缠态保真度仍然>95%,信息传输速率可保持在 1 Kbps 以上。结果证明了所提出的 QSDC 网络的可行性,为未来实现基于卫星的长距离和全球 QSDC 奠定了基础。
该项工作部分由国家重点研发计划(2017YFA0303700)资助,部分由广东省重点研发计划(2018B030325002)资助,部分由国家自然科学基金(11974205)资助,部分由北京未来芯片高精尖创新中心(ICFC)资助。 Dong Pan 的工作得到了中国国家留学基金委 (CSC) 资助 (资助编号 201806210237)。Lajos Hanzo 的工作部分得到了英国工程与物理科学研究理事会 (COALESCE) 项目 (EP/N004558/1、EP/P034284/1、EP/P034284/1 和 EP/P003990/1) 的资助,部分得到了英国皇家学会全球挑战研究基金的资助,部分得到了欧洲研究理事会 QuantCom 高级研究员基金的资助。
引言:量子通信使远程双方能够在远距离上安全地共享秘密信息 [1]。自从 Bennett 和 Brassard [2] 提出开创性的协议以来,人们开发了不同的量子通信模式,例如量子密钥分发 (QKD)、量子秘密共享、量子安全直接通信 (QSDC)、量子隐形传态、量子密集编码等 [2–6]。QSDC 是量子通信的重要模式之一;与 QKD 相比,QSDC 直接通过量子信道发送秘密信息,而无需预先设置密钥,从而消除了与密钥管理和密文攻击相关的进一步安全漏洞 [7]。自从第一个 QSDC 协议被提出 [4] 以来,它已成为过去十年量子通信的热门研究课题之一 [8–19]。对于纠缠载流子,2003 年邓志强、龙志强和刘志军提出了两步 QSDC 协议,明确提出了 QSDC 的标准 [20]。随后,基于高维纠缠、多体纠缠和超纠缠的 QSDC 协议相继被发展出来 [21–25]。对于单光子载流子,文献 [26] 提出了第一个 QSDC 协议,即所谓的 DL04 协议,其可行性已在 [27–29] 中得到证明。张伟等人进行了带有量子存储器的 QSDC 实验 [30]。齐若阳等人 [31] 进行了基于量子存储器的 QSDC 实验 [32]。
