摘要:从量子传感到量子计算,量子发射器在众多应用中必不可少。六方氮化硼 (hBN) 量子发射器是迄今为止最有前途的固态平台之一,因为它们具有高亮度和稳定性以及自旋-光子界面的可能性。然而,对单光子发射器 (SPE) 的物理起源的理解仍然有限。在这里,我们报告了整个可见光谱中 hBN 中的密集 SPE,并提出证据表明大多数这些 SPE 可以通过供体-受体对 (DAP) 很好地解释。基于 DAP 跃迁生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作为物理理解 hBN 中的 SPE 及其在量子技术中的应用迈出了一步。关键词:六方氮化硼、单光子发射器、供体-受体对、量子光学■简介
悉尼科技大学土木与环境工程学院,悉尼,新南威尔士州 2007,澳大利亚 韩睿,研究生 东北大学材料各向异性与织构教育部重点实验室,沈阳 110819,中国,悉尼科技大学土木与环境工程学院,悉尼,新南威尔士州 2007,澳大利亚,*Andrew Nattestad,DECRA 研究员 ARC 电子材料科学卓越中心,智能聚合物研究所,澳大利亚创新材料研究所,伍伦贡大学,伍伦贡,新南威尔士州 2525,澳大利亚,anattest@uow.edu.au (A. Nattestad),0000-0002-1311-8951 *孙旭东,教授 东北大学轧制技术与自动化国家重点实验室,沈阳 110819,中国,xdsun@neu.edu.cn (X. Sun) *黄振国,副教授 教授
采用光学显微镜方法对二维 (2D) 材料中的缺陷进行纳米级表征是光子片上器件的关键步骤。为了提高分析吞吐量,最近开发了基于波导的片上成像平台。然而,它们固有的缺点是必须将 2D 材料从生长基底转移到成像芯片,这会引入污染,可能会改变表征结果。在这里,我们提出了一种独特的方法来规避这些不足,即直接在氮化硅芯片上生长一种广泛使用的 2D 材料(六方氮化硼,hBN),并对完整的原生材料中的缺陷进行光学表征。我们将直接生长方法与标准湿转移法进行了比较,并证实了直接生长的明显优势。虽然在当前工作中用 hBN 进行了演示,但该方法很容易扩展到其他 2D 材料。
我们报告了在六方氮化硼封装的双栅极单层 WS2 中的电子传输测量结果。使用从室温到 1.5 K 工作的栅极欧姆接触,我们测量了本征电导率和载流子密度随温度和栅极偏压的变化。本征电子迁移率在室温下为 100 cm2/(Vs),在 1.5 K 下为 2000 cm2/(Vs)。迁移率在高温下表现出强烈的温度依赖性,与声子散射主导的载流子传输一致。在低温下,由于杂质和长程库仑散射,迁移率达到饱和。单层 WS2 中声子散射的第一性原理计算与实验结果高度一致,表明我们接近这些二维层中传输的本征极限。
六方氮化硼 (hBN) 是一种重要的绝缘体,被纳入众多二维电子、光电和光子器件中。天然 hBN 是 20% 10 B 和 80% 11 B 同位素的混合物,而单同位素 hBN 则是一种仅含单一硼同位素(10 B 或 11 B)的变体。因此,单同位素 hBN 具有更高的热导率和更强的中子吸收率(就 h 10 BN 而言),使其非常适合用作中子探测器、纳米柔性电子设备中的热管理材料和基于声子极化的纳米光子学。在这里,我们使用含有单一硼同位素和氮的硼粉合成了近似单同位素的 hBN,并在大气压下从 Fe-Cr 金属熔剂中生长出单晶。剪切(≤1.3 cm -1 )和层内(≤3.3 cm -1 )模式的拉曼峰较窄,表明晶体高度有序。在光致发光光谱中,声子辅助跃迁峰的存在也表明晶体质量很高。这种生长方案使我们能够消除 4.1 eV 处的发射。这项工作为研究同位素效应的基本特性和高性能 hBN 器件提供了一种新材料。
ETMOS 项目旨在通过分子束外延 (MBE) 和脉冲激光沉积 (PLD) 开发电子级过渡金属二硫属化物 (TMD) 的大面积生长。根据最近关于在六方晶体衬底上生长的 MoS2 外延质量的报告和初步结果,我们将推动这些材料在宽带隙 (WBG) 六方半导体 (SiC、GaN、AlN、AlGaN 合金) 和绝缘蓝宝石上的外延层生长。五个合作伙伴在薄膜生长 (CNRS、SAS)、高级特性和模拟 (CNR、HAS、U-Pa)、加工和电子设备原型 (CNR) 方面拥有互补的技能。将在不同衬底 (Si、蓝宝石、SiC、块状 GaN) 上生长 WBG 半导体模板/薄膜,以完全控制起始材料的特性并制备外延就绪表面,从而实现高质量和均匀的 TMD MBE 和 PLD 生长。沉积范围将从单层 (1L) 到几层 (最多 5) MoS2 和 WSe2,并在直径最大为 100 毫米的晶片上控制亚单层厚度。将开发 MBE 或 PLD 期间的 TMD 替代掺杂,重点是 MoS2 的 p+ 掺杂,这对设备应用具有战略意义。除了生长设施外,ETMOS 联盟还拥有整套形态、结构、化学、光学和电扫描探针表征,有助于在每个生长步骤中实现高质量。将通过专门设计的测试设备研究 TMD 的电性能 (掺杂、迁移率、电阻率等) 以及跨 TMD/WBG 异质结的电流传输。实验将通过生长模拟和 WBG 上 TMD 电子能带结构的从头计算来补充。将制定多尺度表征协议,以将我们的外延 TMD 与使用相同或互补沉积方法的其他小组的结果进行对比。最后,将制造利用 TMDs/WBG 异质结特性的器件原型,包括:(i) 基于 p+-MoS2 与 n-GaN 或 n-SiC 原子突变异质结的带间隧穿二极管和晶体管;(ii) MoS2/GaN 和 MoS2/SiC UV 光电二极管;(iii) 具有 Al(Ga)N/GaN 发射极和 1L TMD 基极的热电子晶体管。开发的材料/工艺的目标是在项目结束时达到 TRL=5。由于 ETMOS 合作伙伴与 SiC 和 GaN 领域的领先工业企业(STMicroelectronics、TopGaN、Lumilog)保持着持续合作,因此来自行业的代表将成为 ETMOS 顾问委员会的成员,为工艺与生产环境的兼容性提供指导。我们的 TMDs 生长活动与常用的 CVD 方法高度互补。我们预计与石墨烯旗舰项目第 1 和第 3 部门的团队将产生强大的协同作用,从而促进欧洲在 TMD 和设备应用大面积增长方面的能力。
在电子设备结构中引入层状二维 (2D) 材料是提升电子设备性能和提供附加功能的一种有趣策略。例如,石墨烯(导电性)已用作电容器 [ 1 ] 和电池 [ 2 ] 中的电极,而过渡金属二硫属化物 (TMD),例如 MoS 2 、 WS 2 和 WSe 2(半导体性),常用作场效应晶体管 (FET) 和光电探测器 [ 3 – 5 ] 中的沟道。六方氮化硼 (h-BN) 是由 B 和 N 原子排列成 sp 2 六方晶格的二维层状材料,其带隙为 5.9 eV [ 6 ]。因此,h-BN 是一种电绝缘体,并且在许多不同的应用中非常有用。到目前为止,h-BN 已被证明是一种非常可靠的 FET 栅极电介质,并且能够比高 k 电介质更好地抵抗电应力 [7,8],因为
