量子密码学是一个新兴的、令人兴奋的领域,它利用量子物理学来保护通信线路不被监视或拦截。该领域的基本思想,如不确定性原理和量子纠缠的事实,被用于实现前所未有的安全级别。我们的深入研究“量子密码学:安全通信协议的数学基础和实际应用”研究了量子密码协议背后的数学原理以及它们在现实世界中的应用。我们的研究详细介绍了量子密码学背后的理论。它解释了量子密钥分发 (QKD)、量子隐形传态和量子安全直接通信 (QSDC) 等思想。量子密码学背后的主要思想之一是量子比特的概念,它们就像常规比特,但属于量子力学。由于叠加,它们可以同时处于多个状态。量子密码学方法利用这一特性,通过将数据置于量子态并利用量子测量本质上不可预测的事实来确保通信的安全。我们正在进行的研究着眼于如何在典型的日常情况下使用量子密码学。我们研究了在尝试构建量子传输基础设施时出现的问题,例如噪声、退相干和规模。我们制定了计划,通过提供有关如何设置实验以及技术如何改进的详细信息,来构建强大而值得信赖的量子密码系统。我们的研究探讨了量子密码学如何用于除确保通信安全之外的其他领域。我们研究了它对量子网络、量子计算和安全多方处理等新技术的意义。我们希望通过解释量子密码学的更大影响,鼓励人们在这个突破性领域进行更多的研究和提出新想法。
理解复杂的神经回路及其与特定行为的关系需要对神经元亚型进行精确的时间和空间调节。非遗传近红外光刺激是最有前途的大脑非侵入性神经接口技术之一。1-5 最近,脉冲红外神经刺激 (INS) 技术已被引入作为一种能够安全且可逆地调节神经活动的方法。1 与其他波长的红外刺激(例如 808 nm、2 980 nm、3 5.6 μ m 4、5 )引起的效应相反,脉冲传输 ∼ 1.875 μ m 红外波长会导致局部热量传输并被水快速吸收。6 当通过 200 μ m 光纤以短脉冲串(0.25 ms、200 Hz、0.5 s)传输时,这种高度聚焦(亚毫米)光学方法为灵长类动物皮层中的功能性柱特异性刺激提供了一种独特的方法。 7 因此,INS 相较于传统电刺激的优势包括高空间选择性、非接触式传递,以及对于灵长类动物和人类应用而言更为重要的一点,即无需事先表达视蛋白即可对大脑部位进行神经调节。8、9 此外,凭借这种靶向光纤刺激的精确度和 MRI 兼容性,局部 INS 结合 MRI 可用于灵长类动物大脑网络的体内映射 10-12,并有望用于对清醒行为猴子进行神经调节。虽然这些应用已显示出对体内回路神经调节的巨大前景,但其作用机制或对单个细胞类型的影响目前仍然知之甚少。现在有越来越多的证据表明 INS 会导致神经调节。通过电生理学、内在信号光学成像和体内钙成像评估,INS 已被证明可在麻醉啮齿动物中诱导兴奋性和抑制性神经元反应。 13、14 INS 对麻醉恒河猴视觉皮层产生了典型的视觉诱导皮层内在信号 7 的反应,而且导致功能匹配的眼部优势域的选择性调节,与局部皮层-皮层连接的激活一致。超高场 MRI 中的 INS 可激活恒河猴解剖学预测的中尺度全球大脑部位,这进一步表明投射细胞(兴奋性锥体神经元)被 INS 激活。10 – 12 这些 INS 诱导的反应已被证明具有强度和持续时间依赖性。尽管有这些令人信服的证据,但直接用电生理学方法展示神经元反应仍然具有挑战性。一个被称为贝克勒尔效应的问题在于,记录电极的直接加热会通过电极中的热诱导电流污染神经元反应。Cayce 等人。使用同时在麻醉啮齿动物体内使用 INS 进行钙成像,并观察大脑表面皮质星形胶质细胞和顶端树突中的细胞内钙信号。14 Kaszas 等人使用遗传编码的钙指示剂 Syn-GCaMP6f 进行双光子钙成像,并表明 INS 在麻醉小鼠皮质体内的神经元中诱导微弱的细胞内钙信号。15 到目前为止,我们对神经元反应的理解仍然处于初级阶段。其潜在的作用机制尚不清楚 16 – 23,并且在细胞水平上对不同神经元亚型以及体内不同生理状态的反应的影响仍然缺乏。特别是,尽管 fMRI 研究表明 INS 可在远处皮质部位诱导 BOLD 激活,但对于细胞回路对这种功能连接结果的贡献知之甚少。为了研究 INS 如何影响体内单个神经元并检查对不同细胞亚型的影响,我们在小鼠体感皮层 2/3 层以单细胞分辨率对 INS 的神经元钙反应进行了双光子成像。使用特定的遗传编码钙指示剂 GCaMP6 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的意义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。
环状 RNA (circRNA) 是一大类非编码 RNA。尽管已鉴定出数千种环状转录本,但其中大多数的生物学意义仍未得到探索,部分原因是缺乏生成功能丧失动物模型的有效方法。在本研究中,我们重点研究了 circTulp4,这是一种源自 Tulp4 基因的丰富 circRNA,在大脑和突触区室中富集。通过创建 circTulp4 缺陷小鼠模型,我们在其中突变了负责生成 circTulp4 的剪接接受体位点,但不影响线性 mRNA 或蛋白质水平,我们能够进行全面的表型分析。我们的结果表明,circTulp4 在调节神经元和大脑生理学、调节兴奋性神经传递的强度和对厌恶刺激的敏感性方面至关重要。该研究提供的证据表明,circRNA能够调节神经元中的生物学相关功能,并在表型的多个层面上产生调节作用,为circRNA在神经过程中的调控作用建立了原理证明。
阿尔茨海默病 (AD) 中的神经元功能障碍和认知能力下降可能是由多种病理生理因素引起的。然而,人类的机制证据仍然很少,需要改进的非侵入性技术和综合模型。我们引入了个性化的 AD 计算模型,该模型建立在全脑 Wilson-Cowan 振荡器之上,并结合了来自 132 名 AD 患者的静息态功能 MRI、淀粉样蛋白-β (A β ) 和 tau-PET,以评估毒性蛋白质沉积对神经元活动的直接影响。这种针对特定主题的方法揭示了关键的病理机制相互作用,包括 A β 和 tau 对认知障碍的协同作用以及随着疾病进展而增加的神经元兴奋性。通过基于体素的形态测量,数据得出的神经元兴奋性值可以强烈预测临床相关的 AD 血浆生物标志物浓度 (p-tau217、p-tau231、p-tau181、GFAP) 和灰质萎缩。此外,重建的 EEG 代理量显示了标志性的 AD 电生理学改变(θ 波段活动增强和 alpha 波段减少),这种改变发生在 A β 阳性和边缘系统 tau 参与后。小胶质细胞激活对神经元活动的影响不太明确,这可能是由于神经成像在映射神经保护和有害激活表型方面的局限性。机械脑活动模型可以进一步阐明复杂的神经退行性过程并加速预防/治疗干预。
1. 我们今天进行到哪一步?回顾 2. 赛外测试 3. 未成年人使用管制药物的特殊程序 4. 耐力训练师可享受快速通道 5. 基因兴奋剂和克隆 6. 头发和体液样本 7. 管制药物鸡尾酒 8. 取消两阶段通知 9. 小马测量会议 – 阳性样本的后果 10. 其他主题?
1 Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 2 Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 3 Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854, 4 Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, Departments of 5 Medical and Molecular Genetics and 6 Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, 7 Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, and 8 Department of Cell生物学与神经科学,罗格斯大学,新泽西州皮斯卡塔维08854
OIG发现,开处方的信息不足以支持与新兴奋剂处方相对应的ADHD诊断,并使用了不一致的评估方法。,43%的心理健康和60%的初级保健EHR表明,刺激剂被开处方以促进护理的连续性,并记录了患者报告的ADHD诊断和治疗史。然而,50%的心理健康和46%的初级保健处方者依靠患者的自我报告,并且没有记录试图验证医疗服务提供者先前诊断的尝试。在启动兴奋剂之前未能建立或验证多动症诊断可能会导致患者接受不保证或有害的治疗。12
- Cone, EJ 等人。“阿片类药物的法医药物检测:I. 检测尿液中的 6-乙酰吗啡作为近期海洛因暴露的指标;药物和检测注意事项以及检测时间。”J. Anal. Toxicol. . 第 15,1 卷(1991 年):1-7。doi:10.1093/jat/15.1.1 - Cone, EJ 等人。“阿片类药物的法医药物检测。VII. 鼻腔内(吸食)海洛因的尿液排泄情况。”J. Anal. Toxicol. 第 20,6 卷(1996 年):379-92。doi:10.1093/jat/20.6.379 - Sawynok, J。“海洛因的治疗用途:药理学文献综述。”Canadian J Physiol Pharmacol. 第 20,6 卷(1996 年):379-92。doi:10.1093/jat/20.6.379 64,1 (1986): 1-6。doi:10.1139/y86-001。- Smith, ML 等人。“吸食和静脉注射海洛因后总吗啡、游离吗啡和 6-乙酰吗啡的尿液排泄情况。”J Anal Toxicol。2001;25(7):504-514。doi:10.1093/jat/25.7.504
虽然荷兰、葡萄牙和瑞士等国家已经成功实施了正式的药物检查服务,即人们可以匿名提交样本进行专业法医分析并接受量身定制的干预措施 (1),但澳大利亚的做法更加谨慎。在节日期间(例如 2018 年、2019 年的 Groovin the Moo 节),药物检查的情况有限,2022 年 7 月,CanTEST 诊所于堪培拉开业,这是澳大利亚第一家固定地点药物检查服务 (2)。CanTEST 是一项免费服务,不仅提供保密的药物检查,还根据服务用户的具体测试结果为他们提供个性化的信息、咨询和建议。2023 年 2 月,昆士兰州政府宣布支持在昆士兰州引入药物检查服务;在本公报发布时,服务交付尚未开始。