(2024年9月11日收到; 2024年11月20日修订; 2024年11月20日接受)摘要。氧化锌纳米颗粒(ZnO-NP)是一种可生物降解且与生物系统具有低毒性和高兼容性的纳米材料。它们似乎具有生物医学和光催化应用的巨大潜力,尤其是与其他金属氧化物纳米材料相比。此外,ZnO-NP具有强大的紫外线(UV)吸收特性,具有成本效益,并且易于合成。但是,纯ZnO-NP具有多个局限性,包括宽的能量带隙,高激发结合能,可见范围内的光催化活性差以及限制其应用的显着电子孔重组。为了解决这些局限性,本研究成功地将氧化石墨烯(GO)纳入ZnO-NP。增加4%的速度将能源差距从2.87 eV减少到2.20 eV,从而大大增强了其活动。由于整合,它们的光催化活性增强了,在80分钟可见光暴露后,降解了98%的亚甲基蓝色染料。此外,GO融合增加了其抗氧化活性,将其半最大抑制浓度(IC 50)从38.38%增加到51.60%。与纯ZnO-NP相比,纳米复合材料表现出优异的抗菌活性,并表明通过GO整合增强了抗菌作用。这些增强归因于改善的带隙,稳定性,表面功能和纳米复合形态,如各种表征方法所证实。关键词:抗菌,抗氧化剂,染料降解,GO/ZnO纳米复合材料,反应性氧
一个特定的项目R&D计划,该计划涉及当前LARTPC中光子检测器技术和光子学的可扩展性,朝着光覆盖的非常大的表面扩展,以供将来的LARTPC模块。
CONSPECTUS:在分子系统中制备和操纵纯磁态是利用合成化学的力量来推动实用量子传感和计算技术的关键初始要求。在有机系统中实现所需的更高自旋态的一种途径是利用单重态裂变现象,该现象从具有多个发色团的分子组装中最初光激发的单重态产生成对的三重态激发态。由此产生的自旋态的特征是总自旋(五重态、三重态或单重态)及其在特定分子或磁场轴上的投影。这些激发态通常高度极化,但表现出不纯的自旋布居模式。在此,我们报告了驱动单个纯磁态布居的分子设计规则的预测和实验验证,并描述了其实验实现的进展。这项工作的一个重要特点是理论、化学合成和光谱学之间的密切合作。我们首先介绍我们理解单重态裂变系统中自旋流形相互转换的理论框架。该理论对分子间结构和相对于外部磁场的方向做出了具体的可测试预测,这应该会导致纯磁态制备,并为解释磁谱提供了强大的工具。然后,我们通过对一系列符合一个或多个已确定的结构标准的新分子结构进行详细的磁谱实验来测试这些预测。许多这样的结构依赖于具有这项工作独有特征的分子的合成:二聚体中发色团之间的刚性桥、具有定制的单重态/三重态对能级匹配的杂并苯或侧基工程以产生特定的晶体结构。我们通过应用和开发几种磁共振方法揭示了这些系统的自旋演化,每种方法在与量子应用相关的环境中具有不同的灵敏度和相关性。我们的理论预测被证明与我们的实验结果非常一致,尽管通过实验满足理论对真正的纯态制备所要求的所有结构处方仍然是一个挑战。我们的磁谱与三重态对行为模型相一致,包括在二聚体和晶体中在特定条件下将粒子聚集到五重态的 ms = 0 磁亚能级,表明这种现象可以通过分子设计进行控制。此外,我们展示了单重态裂变系统中自旋态的新颖和/或高灵敏度检测机制,包括光致发光 (PL)、光诱导吸收 (PA) 和磁导 (MC),为更深入地了解这些系统如何演化以及在单分子量子极限上进行计算应用所需的实验指明了技术上可行的途径。■ 主要参考文献
化学系 波普学院(自治学院),Sawyerpuram 628 251,泰米尔纳德邦 附属于 MS 大学,Tirunelveli - 627 012,泰米尔纳德邦,印度 摘要 - 使用八角茴香提取物通过绿色合成方法合成了一种有效的氧化锰纳米粒子。 通过紫外可见光、傅立叶变换红外光谱、原子力显微镜和扫描电镜研究对制备的纳米粒子进行了表征。 氧化锰纳米粒子的紫外可见光光谱显示最大吸收在 250 nm 和 300 nm 左右。 这是因为 n → π* 和 π → π* 跃迁。 氧化锰的 FT-IR 光谱显示 Mn–O 振动峰以 580 cm -1 为中心,而另一个以 1627 cm -1 为中心的明显峰是 Mn 原子上的 O–H 伸缩振动。利用AFM和SEM表征表面形貌。以亚甲蓝作为有机污染物,评价了氧化锰纳米粒子对染料降解的光催化活性。关键词:氧化锰,紫外-可见光,SEM,光催化活性,亚甲蓝1.引言绿色合成是一种环境友好的方法,它代表了化学领域的一种不同思维方式,旨在消除有毒废物,降低能耗,使用水、乙醇、乙酸乙酯等生态溶剂。纳米材料作为新型抗菌剂出现,具有高表面积与体积比和独特的物理化学性质[1]。氧化锰纳米粒子广泛用于污染物传感、药物输送、数据存储、催化和生物医学成像。随着人们对环境污染的关注度日益提高,纳米粒子的绿色合成变得非常重要。基于绿色化学的纳米粒子合成由于其生态友好的性质而受到青睐。氧化锰纳米粒子在催化、离子筛、充电电池、化学传感装置、微电子和光电子等多个领域有着广泛的应用,引起了人们的广泛关注。[2-9] 本研究采用绿色方法制备了氧化锰纳米粒子,并通过紫外-可见光、傅里叶变换红外和扫描电子显微镜分析方法进行了表征。合成的氧化锰纳米粒子在可见光区对染料降解表现出光催化活性。 2.实验 2.1 氧化锰纳米粒子的制备 在典型的反应过程中,将 3.2 g 硫酸锰和 1.0 g 聚乙二醇溶解在 50 mL 水中。然后加热溶液直至溶解。加入6.56g乙酸钠和50mL新鲜制备的八角茴香提取物(Illicium verum)溶液,室温下剧烈搅拌3小时,过滤所得溶液,洗涤、分离纳米颗粒,在90℃真空干燥箱中干燥12小时,保存待进一步研究。2.2.八角茴香提取物的制备 取约10g新鲜八角茴香,用蒸馏水彻底清洗以除去灰尘颗粒。将洗净的八角茴香切成小块,放入带水冷凝器的圆底烧瓶中,在100mL蒸馏水中煮沸1小时。用Whatman No.41过滤提取物,得到纯提取物。 2.3. 光催化活性 ` 在本研究中,使用著名染料亚甲蓝作为探针分子来评估合成纳米粒子在直射阳光下的光催化活性。选择亚甲蓝在665nm处的特征光吸收峰来监测光催化降解过程。实验按照以下步骤进行。 2.4. 步骤 ` 每次测量时,将0.05g样品加入100mL浓度为0.0031g/L的亚甲蓝水溶液中。将悬浮液在黑暗中搅拌约一小时,以确保亚甲蓝在纳米颗粒表面的吸附和解吸平衡建立。然后将溶液暴露在阳光下。在平衡后以10分钟的恒定时间间隔提取3毫升悬浮液,然后离心以将纳米颗粒与上清液分离。用JASCO V650 UV-Vis分光光度计测量上清液的紫外-可见吸收光谱。使用以下公式计算染料降解的百分比:降解百分比=
摘要。ZnO 纳米粒子 (NPs) 用于光学、电子、传感、激光、光催化装置等。这些应用不仅依赖于形貌,还依赖于尺寸,可通过表面导向剂进行定制。在本研究中,我们研究了 4 个带有尿素/硫脲基团的三足配体(即 1、2、3 和 4)对表面改性 ZnO NPs(即 1Z、2Z、3Z 和 4Z)形貌的影响,这些配体分别在室温(30-40 C)碱性条件下合成。配体用于在室温下获得具有各种形貌的表面改性 ZnO。 1Z、2Z、3Z 和 4Z 分别观察到延伸的六边形纳米棒(* 2-3 微米长度和 * 400 纳米宽度)、层状(薄片自组装形成层状结构)、多分散盘状[微米级(2-3 微米)和纳米级(300-400 纳米)颗粒和纳米棒(1-1.5 微米长度和 130-165 纳米宽度)状形态。1Z 纳米棒具有尖端,而 4Z 纳米棒具有半圆形端部。已经通过罗丹明 B 染料降解评估了这些表面改性 ZnO NP 的光催化研究。
在收购兰布森(专门从事光学家的开发和供应)的全球参与者之后,ARKEMA在英国Wetherby(英国)开设了卓越中心,并为其客户和合作伙伴提供了针对紫外线技术的专业知识和全面,高性能的解决方案。集成到Sartomer的光能专业业务(该市场的先驱)中,该中心是光化增长和发展策略的关键组成部分,即未来的无溶剂无溶剂可持续技术。为了为客户服务,Arkema正在英国Wetherby开设一个卓越中心。配备了一流的设备,并由经验丰富的团队领导,该团队在光引发剂合成和配方方面具有独特的专业知识,该中心将为开发和微调解决方案提供一个卓越的协作空间,这些空间是针对客户和合作伙伴的挑战量身定制的,尤其是在电子,3D印刷,3D印刷,胶粘剂,胶粘剂,胶粘剂,以及高强度的市场上。“该中心都支持经验丰富的配方者,也支持那些正在寻求最先进的紫外线树脂和光吸收器系统专业知识的能源固化技术的人,” Sartomer兼Arkema Coating Solutions的VP首席执行官Laurent Peyronneau说。“它还汇集了技术和专业知识,以应对能源固化挑战并开发创新的解决方案以释放新的机会。”该尖端实验室将补充专门针对Arkema涂料解决方案的现有研究和应用中心网络,以便为Arkema的性能添加剂。该小组报告说,2020年的销售额约为80亿欧元,在全球20,600名员工的55个国家 /地区运营。这些添加剂在许多领域增强了该小组的专业知识,并在创新产品的设计和开发以及涂料,粘合剂和高级材料领域的新应用中发挥着重要作用。基于其在材料科学方面的独特专业知识的建立,Arkema提供了一流的一流技术组合,以满足对新材料的不断增长的需求。在2024年成为专业材料的纯粹玩家的野心之后,该小组的结构为3个互补,弹性和高度创新性的细分市场,专门针对特种材料 - 固定性解决方案,高级材料和涂层解决方案 - 核算组合的群体销售,以及一个良好的且拟合良好且有竞争力的Intermediates细分市场。Arkema提供了尖端的技术解决方案,以应对新能量,获得水,回收,城市化和流动性的挑战,并与所有利益相关者建立永久性对话。www.arkema.com媒体联系Gilles Galinier +33 1 49 00 70 07 Gilles.galinier@arkema@arkema.comvéroniqueobrecht +33 1 49 00 88 41 veronique.obrecht@arkarkema@arkeme.com
顺序状态鉴别是一种针对 N 个分离接收方的策略。由于顺序状态鉴别可以应用于多方量子密钥分发 (QKD),它已成为量子信息理论中的相关研究领域之一。到目前为止,顺序状态鉴别的分析仅限于特殊情况。在本报告中,我们考虑了顺序状态鉴别的广义化。在这里,我们不限制先验概率以及量子态和接收方的数量。我们表明广义顺序状态鉴别可以表示为优化问题。此外,我们研究了两个量子态的广义顺序状态鉴别的结构并将其应用于多方 QKD。我们证明,当接收方数量不太多时,两个纯态的广义顺序状态鉴别可以适用于多方 QKD。此外,我们表明两个混合状态的广义顺序状态鉴别可以以较高的最佳成功概率进行。这个最佳成功概率甚至高于量子复制和量子广播策略。因此,混合状态的广义顺序状态鉴别足以执行多方 QKD。此外,我们证明了广义顺序状态鉴别可以通过使用线性光学实验实现。最后,我们分析了最佳顺序状态鉴别提供的多方 QKD 安全性。我们的分析表明,即使在低信道效率下,多方 QKD 也能保证非零密钥速率。
400 nm 至 800 nm。(实线)包括 CsI(Tl) 闪烁体的发射光谱以供比较。(虚线)(b)不同光活性层厚度的 OPD 在暗条件和 950 µW/cm 2 光照辐照度(波长 546 nm)下实验和拟合的电流密度 (J) 与电压 (V) 特性。当实线符号表示光响应时,空心符号表示测得的暗电流。实线是根据非理想二极管方程拟合的暗电流密度。虚线表示当分流电阻 R sh 为无穷大时的理想 JV 曲线。(c)对于具有不同活性层厚度的 OPD,暗电流密度 (J dark ) 测量图与内部电场的关系。(d)反向偏压为 1.5V 时具有 320 nm 厚度活性层的 OPD 的外部量子效率 (EQE)...... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36