在高盐土壤和水域中,在这些生态系统中存活的微生物除了限制生存率的任何其他因素外,还必须处理过多的盐。卤素和卤代微生物使用各种策略来维持其细胞膜渗透平衡,并防止细胞质水的损失。在这些策略中,包括蛋白质和RNA/DNA影响的分子水平的修改,盐水适应性,兼容溶质适应性以及盐稳定的细胞表面和膜。由于其生理适应性,卤素/卤代微生物具有巨大的不同应用潜力。研究主题“适应卤素/盐油微生物及其应用”包括有关在各种鱼类中使用盐油和卤素微生物的审查和原始研究文章,包括农业,药物,药物,药品,工业,工业,食物,食品,食品和诸如水分的杂物化处理。卤素和卤素微生物已经开发了多功能分子机制来应对盐分胁迫,许多这些分子适应性在生物技术中都有潜在的应用。在这种情况下,Zhou等人。通过比较基因组分析探索了六型pontixanthobacter和Allopontixanthobacter中盐油耐受性的机制。直接连接到助效的基因包括参与渗透液合成,膜通透性控制,离子传输,细胞内信号传导,多糖生物合成和SOS响应的基因。类似的基因含量先前已在其他细菌中进行了描述,因此增强了这些想法,即这些是解释晕耐的主要机制。作者正在将这些细菌的全基因组共发生,遗传多样性和生理特征联系起来。
量子状态的产生和验证是量子信息处理的基本任务,伊朗人,Natarajan,Natarajan,Nirkhe,Rao和Yuen [CCC 2022],Rosenthal和Yuen和Yuen [ITCS 2022],Metger和Yuen,Metger和Yuen [focs 2023] [focs 2023]遵守了任期状态的统治状态。本文从量子分布式计算的角度研究了这一概念,尤其是分布式量子Merlin-Arthur(DQMA)协议。我们首先在一条线上引入一项新型任务,称为州生成,带有分布式输入(SGDI)。在此任务中,目标是生成量子状态u | ψ⟩在该行的最右边节点,其中| ψ⟩是在最左节点处给出的量子状态,u是一个单位矩阵,其描述分布在线的节点上。我们为SGDI提供了DQMA协议,并利用此协议来构建Naor,Parter和Yogev [Soda 2020]研究的集合平等问题的DQMA协议,并通过显示此问题的经典下限来补充我们的协议。我们的第二个贡献是DQMA协议,基于Zhu和Hayashi [物理评论A,2019]的最新工作,以在没有量子通信的网络的相邻节点之间创建EPR对。作为此DQMA协议的应用,我们证明了一个一般结果,显示了如何将任意网络上的任何DQMA协议转换为另一个DQMA协议,在该协议中,验证阶段不需要任何量子通信。
量子态的生成和验证是量子信息处理的基本任务,最近由 Irani、Natarajan、Nirkhe、Rao 和 Yuen [CCC 2022]、Rosenthal 和 Yuen [ITCS 2022]、Metger 和 Yuen [QIP 2023] 在状态合成这一术语下进行了研究。本文从量子分布式计算,特别是分布式量子 Merlin-Arthur (dQMA) 协议的角度研究了这一概念。我们首先在线上介绍一项新任务,称为具有分布式输入的状态生成 (SGDI)。在这个任务中,目标是在线的最右边节点生成量子态 U | ψ ⟩,其中 | ψ ⟩ 是在最左边节点给出的量子态,U 是一个酉矩阵,其描述分布在线的各个节点上。我们为 SGDI 提供了一个 dQMA 协议,并利用该协议为 Naor、Parter 和 Yogev [SODA 2020] 研究的集合相等问题构建了一个 dQMA 协议,并通过展示该问题的经典下限来补充我们的协议。我们的第二个贡献是基于 Zhu 和 Hayashi [Physical Review A, 2019] 的最新研究的 dQMA 协议,用于在没有量子通信的情况下在网络的相邻节点之间创建 EPR 对。作为此 dQMA 协议的一个应用,我们证明了一个通用结果,该结果展示了如何将任意网络上的任何 dQMA 协议转换为另一个 dQMA 协议,其中验证阶段不需要任何量子通信。
JORNADAS ZARAGOZA–PAU DE MATEMÁTICAS (15. a . Jaca 2018. Jaca) 第十五届萨拉戈萨–波城数学及其应用国际会议:哈卡(西班牙),2018 年 9 月 10 日至 12 日 / 编辑 É. Ahusborde...[等]。 — 萨拉戈萨:萨拉戈萨大学简介:材料和应用研究大学研究所,萨拉戈萨大学,2019 年 XXVIII,306 页。 ; 24 厘米。 —(Monografías Matemáticas García de Galdeano;42)ISBN
萨拉戈萨-波城数学会议(第 15 届. .哈卡 2018。Jaca)第十五届萨拉戈萨-波城国际数学及其应用会议:哈卡(西班牙),2018 年 9 月 10 日至 12 日/编辑 É。 Ahusborde......[等]。— 萨拉戈萨:萨拉戈萨大学出版社:萨拉戈萨大学数学与应用研究所,2019 XXVIII,306 页。 ; 24厘米。—(数学专著 García de Galdeano;42)ISBN 数学 - 会议和集会 Ahusborde,É。51(063)
I.程序描述:技术学士学位(B.Tech。)材料科学和工程计划中的旨在通过提供大量的盟军工程课程和可就业技能来实现材料科学的强大基础。这个想法是开发广泛的B.Tech。课程与科学和工程融合在一起,涵盖了材料的关键要素,高级处理,添加剂制造和动手培训。进一步提出的课程将对工程材料的结构 - 培训相关性,处理和服务行为(包括电子设备的半导体,用于能量转换和存储的陶瓷)以及新兴生物技术的聚合物的结构相关性。这种理解既促进了新材料的开发和改进现有材料,以优化制造产品和现代工具。该计划将为学生在理论和实际理解该主题方面奠定坚实的基础。目前,专门研究材料科学和工程的学生需要在可持续性和可再生能源,纳米技术,量子材料和设备,人工智能,智能材料,低功耗计算,制造,制造,制造业和生产率的高级新兴领域学习和开发解决方案。我们在IIT Mandi拥有出色的实验室/研究中心材料科学和工程设施。拟议的B.Tech。此外,提议的B.Tech。计划将帮助我们弥合研究活动与工程教育之间的差距,而我们的毕业生将对未来的增长和行业发挥领导作用。材料工程师还为实用应用提供了材料知识,这些应用是众多部门提供的商品和服务的基石。计划将促进IIT Mandi的学术和研究活动,并通过生产高质量的工程师对社会产生更大的影响。
在细菌和其他微生物中繁殖,并在特殊条件下引起裂解。在1917年F.D'RPILL中首先观察到他检测到从同一患者的粪便标本中获得的滤液中从痢疾患者获得的病原体的裂解。d'eRLELL会得出结论,引起裂解的因子是一种病毒,可以通过细菌过滤器,称为该病毒为噬菌体(«饮食细菌»)和现象 - 作为细菌噬菌体。噬菌体大小与其他病毒相似,在20-800 nm之间变化。它们具有线,立方体和精子等形态。e.coli噬菌体已经(t噬菌体)进行了很好的研究。t(键入)组噬菌体由7个成员表示,其中4个成员(T1,T3,T5,T7)和配对3(T2,T4,T6)。配对的T噬菌体,尤其是T2具有复杂的结构。由于与细菌手机噬菌体相互作用的特征,分为有毒和温带。
摘要:锂离子细胞中多孔电极的微观结构强烈影响其电性化学性能。实验断层扫描技术来研究电极开发过程中的微观结构的昂贵且耗时。为了解决这个问题,提出了一种数值方法来创建数字形态以实现现实的微观结构。在这项研究中,提出了直接数学方法中的球形谐波来发展电极异质结构的虚拟3D形态。引入的方法提供了一个数值轻度的过程,可实现有效的迭代虚拟测试和优化。生成的形态模型被参数化以重现文献中观察到的NMC阴极微结构。电极模型允许评估微观结构的空间分辨几何,传输和电势特征。使用计算的特征来改善连续模型的参数化,作为最广泛使用的基于物理的模型。为此,锂箔/分离器/NMC半细胞的电化学阻抗光谱实际上是由异质和连续方法建模的。然后,就电化学阻抗光谱的动力学和传输特性而言,将修改的连续模型与异质模型作为基准进行了比较。修改的连续元模型在频率和时域都显示出改进的响应。
Song Fu博士(教授)计算机科学与工程学系,NSF IUCRC电力,连接和自治技术中心(ECAT)智能系统,边缘和云计算,机器学习,机器学习,自动驾驶汽车,存储系统,联邦和工业资金; 7博士学生
2 单变量临界点 17 2.1 预测临界点:早期预警信号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 检测引爆:潜力分析 . ... . ...