摘要 - 本研究对飞轮储能系统及其在各种应用中的可行性进行了严格的审查。飞轮储能系统作为一种环保的储能方法越来越受欢迎。飞轮以机械旋转能的形式储存能量,然后在需要时将其转换成所需的电力形式。储能是任何电力系统的重要组成部分,因为储存的能量可用于抵消电力输送系统中的不一致性。能源危机,主要是在发展中国家,对各个部门产生了不利影响,导致人们诉诸各种储能系统来应对所经历的停电。太阳能系统一直是首选的备用系统。然而,太阳能电池的高昂购买和维护成本一直是一大障碍。当需要频繁充电和放电循环时,飞轮储能系统是合适且经济的。此外,飞轮电池具有高功率密度和低环境足迹。人们正在采用各种技术来提高飞轮的效率,包括使用复合材料。本评论论文将讨论飞轮技术的应用领域,例如电动汽车、太阳能和风能发电存储系统以及不间断电源系统。
院士 /科学家 /研究人员:卢比。1180学生:学位/PG/PH.D。:rs。826执业工程师 /专业人士:卢比。3540名参与者在支付注册费后使用Google表格完成注册过程。Google表单链接:https://docs.google.com/forms/d/e/1faipqlsftt wsvmu9lbhjht9henldq6doc2u4hmguqjrjs srmajeiesa/viefform“ svnit-cce” a/c ce号:37030749143,印度国家银行,SVRCET分支,SVNIT校园,Ichchhanath,Surat,IFSC:SBIN0003320。
摘要将废物塑料化学升级为高价值增添的产品,例如单体,燃料或细化学物质是减轻大规模终止塑料的不利影响的有希望的策略。poly(Bisphenol A碳酸盐)(BPA-PC)由于其出色的整体性能而脱颖而出。但是,其耐用性和潜在的环境毒性使得其回收势在必行。尽管在我们的审查之前已经进行了许多有关塑料退化的评论,但由于该领域的快速发展,塑料退化的进度需要不断更新和汇总。同时,BPA-PC作为重要的工程塑料,先前的评论仅着眼于将其去聚合到单体中,而错过了其进一步转换为最终化学物质。在这篇简洁的综述中,我们总结了BPA-PC化学升级到有价值的化学物质的最新发展,并强调了各种催化剂和试剂的作用。一些最具使用的化学升级策略,例如酗酒,氨基溶解和
摘要 - 由于其有效的证明生成,因此已将MPC框架框架作为非交互式零知识知识(Nizkaok)的解决方案。但是,使用这种方法现有的大多数Nizkaok构造需要多次MPC评估才能达到可忽略不计的声音误差,从而导致证明大小和时间渐近至少λ乘以NP关系的大小。在本文中,我们提出了一种新颖的方法,以消除重复的MPC评估的需求,从而为我们称为饮食的任何NP关系提供了Nizkaok方案。相对于NP关系的电路C的大小,饮食的证明尺寸和时间仅是渐近的,但与安全参数λ无关。因此,证明大小和时间都可以大大减少。
我们修改了 R´enyi (1961) 熵公理,使其适用于负(“带符号”)测度,例如,在量子力学的相空间表示中。我们获得了有关系统的两个新信息(缺乏)测度,我们分别将其作为经典香农熵和经典 R´enyi 熵的带符号类似物。我们表明,带符号的 R´enyi 熵见证了系统的非经典性。具体而言,当且仅当带符号的 R´enyi α -熵对某个 α > 1 为负时,测度才具有至少一个负分量。相应的非经典性测试不适用于带符号的香农熵。接下来,我们表明,当 α 为偶数正整数时,带符号的 R´enyi α -熵是 Schur 凹的。(一个例子表明带符号的香农熵不是 Schur 凹的。)然后,我们为带符号测度建立了一个抽象的量子 H 定理。我们证明,在有符号测度的经典(“去相干”)演化下,参数化的有符号 R'enyi 熵家族的成员不减少,其中后者可以是 Wigner 函数或量子系统的其他相空间表示。(示例显示有符号 Shannon 熵可能是非单调的。)我们最终得出一个结论,即从有符号概率开始的相空间演化在有限的时间长度后何时变为经典。
摘要 - 使用BRUS方程研究了限制方程中PBSE,PBS和PBTE半导体的光学性质。结果表明QD表现出尺寸依赖性的光学行为,因此,由于量子限制,QDS表现出可调的带隙和发射波长。随着QD尺寸的减小,所有三种材料的吸收边缘和发射峰均为蓝色。发现PBSE QD即使在较大尺寸的情况下也会显示出明显的量子限制。由于其相对较大的激子BOHR半径(〜46 nm),随着尺寸从10 nm降低到2 nm,频带gap从0.27 eV增加到1 eV,将吸收和排放转移到近红外(NIR)中,导致应用于NIR PhotodeTectors,太阳能电池,太阳能电池,太阳能电池,杂音,并将其应用于。此外,与PBSE相比,PBS QDS在较小的激子BOHR半径(〜20 nm)上显示出较小的量子限制效应。随着尺寸从10 nm降低到2 nm,带隙从0.41 eV增加到1.5 eV,将吸收和发射从NIR转移到可见范围。这是在太阳能电池中使用的,NIR光电探测器和LED可见。此外,PBTE QD还显示出明显的量子限制效应,因为它们相对较大的激子BOHR半径(〜46 nm)。随着尺寸从10 nm降低到2 nm,带隙从0.32 eV增加到约1 eV,将吸收和发射转移到NIR和中红外(miR)区域,使其成为红外探测器,热电和miR应用的出色材料。在研究的半导体材料中,PBS QD通常显示出带隙的最大增加,尺寸降低,使其适合需要更大的带隙可调性的应用,其次是PBSE和PBTE。这些不同的光学特性是由于其独特的电子特性和激子BOHR半径所致。
动态共价键是通过可逆反应形成的,这意味着可以通过改变反应条件(例如温度、pH 值或浓度)来改变反应物和产物之间的平衡。可逆共价键的例子包括亚胺键、二硫键和硼酸酯键。这些键允许创建能够适应和响应外部刺激的材料,从而产生新的特性和功能。三聚体分子通常由于单体单元之间形成额外的化学键而表现出更高的化学稳定性。三聚体分子可以采用特定的结构排列,例如线性、环状或支链构型,具体取决于单体的几何形状和三聚化过程的性质。三聚化用于合成生物活性化合物和药物中间体。与单体相比,三聚体分子可能表现出增强的药理特性。三聚反应有助于生产具有定制特性和功能的高分子量聚合物。三聚体单体
Biradar博士的主题演讲涵盖了5G技术的关键方面。他解释了执行计算任务的强大网络的必要性,详细介绍了手机的内部结构,并讨论了信号调制和不同类型的天线。他进一步探索了5G网络和乐队,并谈到了Juhi Chawla 5G诉讼,对与该技术相关的公众关注提供了全面的看法。
在本文中,我们解决了量子机(AMQ)学习及其创新应用的新兴领域。我们探讨了与机器学习相关的量子力学基础的概述,并强调了如何与经典方法相比,如何使用量子原理来更有效地处理信息。我们使用Qiskit与量子算法的示例进行了逐步讨论,并将其与其经典类似物进行了比较。我们接近AMQ的优势,包括高尺度加速度的潜力以及处理高维数据的能力。最后,讨论了当前的挑战和未来观点,强调了其在各种技术领域的转变中的作用。本文对有兴趣探索机器学习与量子力学之间的相交的人进行了全面的介绍,从而强调了这种组合提供的有希望的机会。关键字:机器学习,量子计算,算法。
