3.1子宫内膜癌从子宫内壁开始。症状可能包括阴道出血,骨盆疼痛,意外的体重减轻,恶心和疲劳。大约23%的子宫内膜癌患者的亚型具有较高的微卫星不稳定性(MSI-H)或DNA不匹配修复(DMMR)缺乏生物标志物。子宫内膜癌对预期寿命和生活质量都有重大影响。患有晚期或复发性子宫内膜癌的患者(这意味着癌症已经超过子宫超出了子宫或以前的治疗后回来)的预后不佳。只有15%在第4阶段诊断出5年或更长时间。影响不仅限于身体健康,而且还限于人们及其家人的心理健康和福祉。患者专家强调,此阶段有效的治疗选择有限,使人们感到沮丧,绝望和抛弃。他们强调了缺乏
这里我们描述了 Acrivon 发现的 ACR-2316,它是一种强效、选择性 WEE1/PKMYT1 抑制剂,临床前研究表明其单药活性优于基准抑制剂。该化合物是使用 AP3 专门设计的,通过平衡抑制 PKMYT1 来克服 WEE1 特异性抑制的局限性,我们的 AP3 平台发现这是 WEE1 抑制剂诱导的主要耐药机制。通过结构引导的药物设计,我们实现了对 WEE1 和 PKMYT1 的精确选择性,确保了主要基于机制的可逆性不良事件。在与基准临床分子的头对头临床前研究中,ACR-2316 与目前的临床 WEE1 或 PKMYT1 抑制剂相比表现出更优异的效力和活性。正在进行的 ACR-2316 单药疗法临床试验的患者给药已经开始,旨在评估 ACR-2316 的安全性和耐受性。
允许将本工作的全部或一部分用于个人或课堂使用的数字或硬副本允许,而没有费用,只要副本不是用于Proft或Commercial Advantage的副本,并且副本均带有此通知和FRST页面上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新发布以在服务器上发布或重新分配到列表,需要事先指定许可和/或费用。请求权限从permissions@acm.org。CHI '24,5月11日至16日,2024年,美国HI,HI,HI©2024由所有者/作者持有的版权。 出版权许可获得ACM的权利。 图像已深入地融入我们的生活中。 是否ACM ISBN 979-8-4007-0330-0/24/05 https://doi.org/10.1145/3613904.3642129通过绘画,摄影或数字技术,创建CHI '24,5月11日至16日,2024年,美国HI,HI,HI©2024由所有者/作者持有的版权。出版权许可获得ACM的权利。图像已深入地融入我们的生活中。是否ACM ISBN 979-8-4007-0330-0/24/05 https://doi.org/10.1145/3613904.3642129通过绘画,摄影或数字技术,创建
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
了解量子多体系统的动力学仍然是一个至关重要的问题,其应用从凝结物理学到量子信息。在数值和分析上,计算动力学数量(例如相关函数和纠缠增长)是一个众所周知的困难问题。近年来,统一电路已经超越了量子计算模型,以最小模型,以研究由局部相互作用控制的一般大学动力学的研究[1-8]。一类特殊的此类电路,称为双统一电路,仍然可以通过精确的计算[9,10]。这些电路是通过基本的时空二元性来表达的,从而导致时间和空间中的单一动力学。这种二元性允许精确计算局部可观察物的相关函数动态[9,11-14],超阶相关器[15,16],纠缠[10,17],量子混乱[18 - 21]的指标[18 - 21],以及双重独立的电路和自然是活跃的理解的主题[22 - 38]和实验[22 - 38]和实验[39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39]超越了封闭量子系统的纯统一动力学,电路模型还通过在时空中给定点引入投影测量值,为非自然动态提供了自然的游戏场。随着微调率的提高,此类系统可能会经历从体积法的过渡到稳态
当代的大规模视觉语言模型(VLM)具有强大的表示能力,使它们无处不在,可以增强图像和文本理解任务。他们经常以对比的方式受到大量图像和相应的文本字幕的对比方式进行训练。尽管如此,VLMS经常在构图推理任务上挣扎,这些任务对对象及其属性的复杂相互作用进行了精细的了解。此失败可以归因于两个主要因素:1)对比的方法传统上专注于从现有数据集中开采负面示例。但是,该模型可能不难区分阳性检查。替代采矿的替代方法是负样本2),但现有的生成方法主要集中于生成与给定图像相关的硬性负面文本。在另一个方向上进行挖掘,即生成与给定文本相关的负面图像样本已被忽略。为了克服这两种限制,我们提出了一个框架,不仅在两个方向上矿山,而且在这两种方式(即图像和文本)中产生了有挑战性的负面样本。利用这些生成硬性负样本,我们在涉及多模式综合推理的任务中显着提高了VLMS的性能。我们的代码和数据集在https://ugorsahin.github.io/enhancing-- vlm.html上发布。
为什么大脑有抑制连接?为什么深度网络有负权重?我们从表示容量的角度提出了一个答案。我们认为表示函数是(i)大脑在自然智能中的主要作用,以及(ii)深度网络在人工智能中的主要作用。我们对为什么有抑制/负权重的答案是:学习更多函数。我们证明,在没有负权重的情况下,具有非递减激活函数的神经网络不是通用近似器。虽然这对某些人来说可能是一个直观的结果,但据我们所知,无论是在机器学习还是神经科学中,都没有正式的理论来证明为什么负权重在表示容量的背景下至关重要。此外,我们还对非负深度网络无法表示的表示空间的几何特性提供了见解。我们期望这些见解将使人们对施加于权重分布的更复杂的归纳先验有更深入的理解,从而实现更高效的生物和机器学习。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
蛋白质磷酸化或去磷酸化是在所有生物体中发现的信号传递的重要机制。多年来,蛋白激酶和磷酸酶的性质被认为在原核生物和真核生物中是不同的。证明主要发生在组氨酸和天冬氨酸残基上,而相反,通常在丝氨酸,苏氨酸或酪氨酸残基上修饰真核蛋白。然而,近年来在细菌中报道了真核样蛋白激酶和磷酸酶,相反,在真核生物中发现了原核性蛋白质的ASP酶的同源物(有关评论,请参见[1-7])。这些研究表明,真核生物和原核生物可能具有所有类型的信号转导的相似机制。蛋白磷酸酶可以根据其酶特异性(即促磷酸酶和Tyr磷酸酶)分为两组[8,9]。ser} THR磷酸酶在ITRO中显示出广泛的特异性,并已分为四类:PP1,PP2A,PP2B和PP2C,根据保守的基序,它们对抑制剂和离子的抑制剂和离子需求的敏感性[9-11]。氨基酸序列比较表明PP1,PP2A和PP2B是同一PPP家族的成员[10]。PPP家族代表了较高的真核生物中蛋白质ser}的最大蛋白质ser} [12]。这些酶还与对称的折断氨酸四磷酸酶具有序列相似性[13]。被识别的PPP家族的第一个原核生物是噬菌体λ221的乘积[14]。目前,几个成员在ARCHEA和细菌中均已详细介绍[15-19]。但是,关于生理学的数据很少
Ankeny、Munsie 和 Leach (2022) 为 iBlastoids 提出的反思、预期和审议 (RAD) 方法虽然很有价值,但需要一个锚点来确保其方法的每个过程都已充分进行。否则,反思、预期和审议可能会偏离航向或过早结束。我们建议将 RAD 方法锚定到复杂性的道德原则上;(当前或潜在的) 类器官实体在本体论和认识论上越复杂,就越需要对该实体进行道德考量。基于 Preiser 和 Cilliers (2010) 的观点,类器官实体的复杂性可以有两个关键要素;类器官实体的特征和功能(本体论复杂性),以及我们目前对类器官实体的理解的功能(认识论复杂性)。这些复杂程度越高,RAD 方法就越需要关注这些要素——以免我们忽略潜在的道德显著特征、功能或知识。例如,对于肠道类器官,反思、预期和审议可能不需要像对于脑类器官、iBlastoids 或多细胞工程化生命系统 (M-CELS) 那样强大 (Sample 等人,2019)。这至少部分是因为脑类器官、iBlastoids 或 M-CELS 等类器官实体的复杂程度超过了肠道类器官。此外,它们的复杂特征和功能中有一些元素可能被视为道德显著的。因此,RAD 流程需要更多时间和精力来解决这些特征、功能和目前的理解。负责任的研究创新 (RRI) 框架的先前迭代将重点放在更好地
