在体内对先锋因素与染色质的接口如何促进转录控制的可及性。在这里,我们通过活果蝇血细胞中的原型GAGA先驱因子(GAF)直接可视化染色质关联。单粒子跟踪表明,大多数GAF是染色质结合的,稳定的结合分数显示出在染色质上存放在染色质上的核小体样限量超过2分钟,比大多数转录因子的动态范围更长。这些动力学特性需要GAF的DNA结合,多聚化和本质上无序的结构域的完全补充,并且是招募的染色质重塑剂NURF和PBAP的自主性,其活动主要使GAF的邻居受益于HSF,例如HSF。对GAF动力学的评估及其内源性丰度表明,尽管有势动力学,但GAF组成且完全占据了染色质靶标,从而提供了一种时间机制,从而维持对体内稳态,环境和发育信号的转录染色质的开放式染色质。
我们提出了一种方案,利用数值“精确”分层运动方程 (HEOM) 中的准静态亥姆霍兹能量,评估在时间相关外力作用下与热浴耦合的系统的热力学变量。我们计算了不同温度下与非马尔可夫热浴强耦合的自旋系统产生的熵。我们表明,当外部扰动的变化足够缓慢时,系统总会达到热平衡。因此,我们基于 HEOM 计算了等温过程的玻尔兹曼熵和冯诺依曼熵,以及准静态平衡系统的各种热力学变量,例如内部能量、热量和功的变化。我们发现,尽管玻尔兹曼和冯诺依曼情况下的系统熵作为系统-浴耦合强度的函数的特征相似,但总熵产生的特征完全不同。在玻尔兹曼情况下,总熵产生总是正的,而在冯·诺依曼情况下,如果我们选择整个系统的热平衡状态(未分解的热平衡状态)作为初始状态,则总熵产生为负。这是因为冯·诺依曼情况下的总熵产生没有适当考虑系统-浴相互作用的熵贡献。因此,必须使用玻尔兹曼熵来研究完全量子状态下的熵产生。最后,我们检查了 Jarzynski 等式的适用性。
摘要目的脑动脉瘤 (也称为颅内动脉瘤或脑动脉瘤) 是全世界成人中最常见的脑血管疾病之一,由脑动脉薄弱引起。脑动脉瘤最有效的治疗方法是介入放射治疗,这极大地依赖于放射科医生的技术水平。因此,准确检测和有效治疗脑动脉瘤仍然是重要的临床挑战。事实上,一个可靠的建模和可视化环境来测量和显示体内血流模式可以洞察脑动脉瘤的血流动力学特征。在这项工作中,我们引入了一种脑血流模拟和实时可视化的流程,涵盖了从医学图像采集到实时可视化和操纵的所有方面。方法我们开发并使用了改进版本的 HemeLB 作为流程的主要计算核心。 HemeLB 是一款针对稀疏和复杂几何结构优化的大规模并行格子玻尔兹曼流体求解器。该管道的可视化组件基于在支持 CUDA 的 GPU 核心上实现的射线行进方法。
断层,正常——推断处用虚线表示,隐藏处用点表示。下沉侧的球和棒。某些断层上的箭头表示已知的断层面倾角方向;数字表示测量的断层面倾角(以度为单位)。
在本文中,我们从密度估计的角度以及对自然图像统计的特定角度进行了对高斯二元限制的玻尔兹曼机器(GB-RBM)的分析。我们发现,GB-RBMS中可见单元的边际概率分布可以写为高斯人的线性叠加,该叠加位于投影平行的thelelotope的顶点,即在高尺寸中平行的。此外,我们的分析表明,GB-RBMS中可见单元的方差在建模输入分布中起着重要作用。GB-RBM。[1]。在实践中,Lee等人。提议对GB-RBMS施加稀疏的惩罚项[2]。但是,Krizhevsky成功地使用GB-RBMS仅从微小的信息中提取特征[3]。Le Roux等。 定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。 Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Le Roux等。定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Cho等。通过一些补救措施解决了培训程序的缺陷[5]。Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Theis等。进一步说明了基于Loglikelihoody的估计[6]。我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。