Loading...
机构名称:
¥ 1.0

我们提出了一种方案,利用数值“精确”分层运动方程 (HEOM) 中的准静态亥姆霍兹能量,评估在时间相关外力作用下与热浴耦合的系统的热力学变量。我们计算了不同温度下与非马尔可夫热浴强耦合的自旋系统产生的熵。我们表明,当外部扰动的变化足够缓慢时,系统总会达到热平衡。因此,我们基于 HEOM 计算了等温过程的玻尔兹曼熵和冯诺依曼熵,以及准静态平衡系统的各种热力学变量,例如内部能量、热量和功的变化。我们发现,尽管玻尔兹曼和冯诺依曼情况下的系统熵作为系统-浴耦合强度的函数的特征相似,但总熵产生的特征完全不同。在玻尔兹曼情况下,总熵产生总是正的,而在冯·诺依曼情况下,如果我们选择整个系统的热平衡状态(未分解的热平衡状态)作为初始状态,则总熵产生为负。这是因为冯·诺依曼情况下的总熵产生没有适当考虑系统-浴相互作用的熵贡献。因此,必须使用玻尔兹曼熵来研究完全量子状态下的熵产生。最后,我们检查了 Jarzynski 等式的适用性。

玻尔兹曼熵与冯·诺依曼

玻尔兹曼熵与冯·诺依曼PDF文件第1页

玻尔兹曼熵与冯·诺依曼PDF文件第2页

玻尔兹曼熵与冯·诺依曼PDF文件第3页

玻尔兹曼熵与冯·诺依曼PDF文件第4页

玻尔兹曼熵与冯·诺依曼PDF文件第5页

相关文件推荐

2021 年

用于人工智能和神经形态计算的硅光子学 Bhavin J. Shastri 1,2、Thomas Ferreira de Lima 2、Chaoran Huang 2、Bicky A. Marquez 1、Sudip Shekhar 3、Lukas Chrostowski 3 和 Paul R. Prucnal 2 1 加拿大安大略省金斯顿皇后大学物理、工程物理和天文学系,邮编 K7L 3N6 2 普林斯顿大学电气工程系,邮编 新泽西州普林斯顿 08544,美国 3 加拿大不列颠哥伦比亚大学电气与计算机工程系,邮编 BC 温哥华,邮编 V6T 1Z4 shastri@ieee.org 摘要:由神经网络驱动的人工智能和神经形态计算已经实现了许多应用。电子平台上神经网络的软件实现在速度和能效方面受到限制。神经形态光子学旨在构建处理器,其中光学硬件模拟大脑中的神经网络。 © 2021 作者 神经形态计算领域旨在弥合冯·诺依曼计算机与人脑之间的能源效率差距。神经形态计算的兴起可以归因于当前计算能力与当前计算需求之间的差距不断扩大 [1]、[2]。因此,这催生了对新型大脑启发算法和应用程序的研究,这些算法和应用程序特别适合神经形态处理器。这些算法试图实时解决人工智能 (AI) 任务,同时消耗更少的能量。我们假设 [3],我们可以利用光子学的高并行性和速度,将相同的神经形态算法带到需要多通道多千兆赫模拟信号的应用,而数字处理很难实时处理这些信号。通过将光子设备的高带宽和并行性与类似大脑中的方法所实现的适应性和复杂性相结合,光子神经网络有可能比最先进的电子处理器快至少一万倍,同时每次计算消耗的能量更少 [4]。一个例子是非线性反馈控制;这是一项非常具有挑战性的任务,涉及实时计算约束二次优化问题的解。神经形态光子学可以实现新的应用,因为没有通用硬件能够处理微秒级的环境变化 [5]。

¥1.0