摘要 —本文讨论了新兴的非冯·诺依曼计算机架构及其在计算连续体中的集成,以支持现代分布式应用,包括人工智能、大数据和科学计算。它详细总结了现有和新兴的非冯·诺依曼架构,范围从节能的单板加速器到量子和神经形态计算机。此外,它还探讨了它们在各种社会、科学和工业领域彻底改变数据处理和分析方面的潜在优势。本文对最广泛使用的分布式应用程序进行了详细分析,并讨论了它们在计算连续体中执行的困难,包括通信、互操作性、编排和可持续性问题。
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
脉冲神经网络的通用模拟代码大部分时间都处于脉冲到达计算节点并需要传送到目标神经元的阶段。这些脉冲是在通信步骤之间的最后一个间隔内由分布在许多计算节点上的源神经元发出的,并且相对于其目标而言本质上是不规则的和无序的。为了找到这些目标,需要将脉冲发送到三维数据结构,并在途中决定目标线程和突触类型。随着网络规模的扩大,计算节点从越来越多的不同源神经元接收脉冲,直到极限情况下计算节点上的每个突触都有一个唯一的源。在这里,我们通过分析展示了这种稀疏性是如何在从十万到十亿个神经元的实际相关网络规模范围内出现的。通过分析生产代码,我们研究了算法更改的机会,以避免间接和分支。每个线程都承载着计算节点上相等份额的神经元。在原始算法中,所有线程都会搜索所有脉冲以挑选出相关的脉冲。随着网络规模的增加,命中率保持不变,但绝对拒绝次数会增加。我们的新替代算法将脉冲均匀地分配给线程,并立即根据目标线程和突触类型对它们进行并行排序。此后,每个线程仅完成向其自身神经元的脉冲部分的传递。无论线程数如何,所有脉冲都只被查看两次。新算法将脉冲传递中的指令数量减半,从而将模拟时间缩短了 40%。因此,脉冲传递是一个完全可并行的过程,具有单个同步点,因此非常适合多核系统。我们的分析表明,进一步的进展需要减少指令在访问内存时遇到的延迟。该研究为探索延迟隐藏方法(如软件流水线和软件诱导预取)奠定了基础。
用于人工智能和神经形态计算的硅光子学 Bhavin J. Shastri 1,2、Thomas Ferreira de Lima 2、Chaoran Huang 2、Bicky A. Marquez 1、Sudip Shekhar 3、Lukas Chrostowski 3 和 Paul R. Prucnal 2 1 加拿大安大略省金斯顿皇后大学物理、工程物理和天文学系,邮编 K7L 3N6 2 普林斯顿大学电气工程系,邮编 新泽西州普林斯顿 08544,美国 3 加拿大不列颠哥伦比亚大学电气与计算机工程系,邮编 BC 温哥华,邮编 V6T 1Z4 shastri@ieee.org 摘要:由神经网络驱动的人工智能和神经形态计算已经实现了许多应用。电子平台上神经网络的软件实现在速度和能效方面受到限制。神经形态光子学旨在构建处理器,其中光学硬件模拟大脑中的神经网络。 © 2021 作者 神经形态计算领域旨在弥合冯·诺依曼计算机与人脑之间的能源效率差距。神经形态计算的兴起可以归因于当前计算能力与当前计算需求之间的差距不断扩大 [1]、[2]。因此,这催生了对新型大脑启发算法和应用程序的研究,这些算法和应用程序特别适合神经形态处理器。这些算法试图实时解决人工智能 (AI) 任务,同时消耗更少的能量。我们假设 [3],我们可以利用光子学的高并行性和速度,将相同的神经形态算法带到需要多通道多千兆赫模拟信号的应用,而数字处理很难实时处理这些信号。通过将光子设备的高带宽和并行性与类似大脑中的方法所实现的适应性和复杂性相结合,光子神经网络有可能比最先进的电子处理器快至少一万倍,同时每次计算消耗的能量更少 [4]。一个例子是非线性反馈控制;这是一项非常具有挑战性的任务,涉及实时计算约束二次优化问题的解。神经形态光子学可以实现新的应用,因为没有通用硬件能够处理微秒级的环境变化 [5]。
我们提出了一种方案,利用数值“精确”分层运动方程 (HEOM) 中的准静态亥姆霍兹能量,评估在时间相关外力作用下与热浴耦合的系统的热力学变量。我们计算了不同温度下与非马尔可夫热浴强耦合的自旋系统产生的熵。我们表明,当外部扰动的变化足够缓慢时,系统总会达到热平衡。因此,我们基于 HEOM 计算了等温过程的玻尔兹曼熵和冯诺依曼熵,以及准静态平衡系统的各种热力学变量,例如内部能量、热量和功的变化。我们发现,尽管玻尔兹曼和冯诺依曼情况下的系统熵作为系统-浴耦合强度的函数的特征相似,但总熵产生的特征完全不同。在玻尔兹曼情况下,总熵产生总是正的,而在冯·诺依曼情况下,如果我们选择整个系统的热平衡状态(未分解的热平衡状态)作为初始状态,则总熵产生为负。这是因为冯·诺依曼情况下的总熵产生没有适当考虑系统-浴相互作用的熵贡献。因此,必须使用玻尔兹曼熵来研究完全量子状态下的熵产生。最后,我们检查了 Jarzynski 等式的适用性。
令 H 为有限维希尔伯特空间,B(H)为作用于 H 的有界算子空间。密度算子ρ∈B(H)(在量子信息论文献中称为量子系统 H 上的状态)为正,迹为1。量子系统之间的动力学通过完全正迹保持映射(也称为量子通道)建模,该映射将密度算子映射到密度算子。对于张量积希尔伯特空间 HA ⊗HB 上的两个二分密度算子ρ和σ,如果存在线性完全正迹保持(CPTP)映射Φ:B(HB) → B(HB),使得σ=id⊗Φ(ρ),则称σ被ρ量子优化。这一概念已在不同背景下以各种形式进行了研究[23,4,3,2,16]。直观地看,量子主导化描述了从 B 系统观察到的无序性。这可以从条件熵的数据处理不等式 H ( A | B ) 中看出,