摘要 ― 当以标准方法(皮下注射 1-2 x 10 9 个活菌)接种羊型布鲁氏杆菌菌株 Rev 1 疫苗(Rev 1)时,可能会诱发长期血清学反应和/或导致怀孕动物流产。结膜途径大大减少了这些缺点。在本实验中,对在怀孕中期进行结膜接种的母羊和山羊进行了 1 x 10 8 CFU 剂量的无害性测试(怀孕结果、未接种疫苗的接触动物的污染、血清学反应持续时间),并与 3 x 108 CFU(母羊和山羊)、1 x 10 9 和 3 x 10 9 CFU(母羊)剂量进行比较。接种疫苗时未观察到任何反应,并且由于疫苗的结膜给药,Rev 1 造成环境污染的风险可以忽略不计。后来,流产发生率高得惊人(超过 60% 的怀孕接种动物),1 x 10 g CFU 母羊组除外(20%)。此外,正常产羔的 1 xl 0 8 CFU 母羊的血清学反应早在接种疫苗 12 周后就再次呈阴性。虽然 1 x 10 8 CFU Rev 1 的剂量比标准剂量(主要是母羊)对怀孕更安全(与山羊相比),但其无害性还不足以建议使用前一种剂量通过结膜途径不加区别地为绵羊和山羊接种疫苗,无论其年龄或生理状态如何。
房东问题是宠物被送到收容所的常见原因。无论是难以获得允许养宠物的单位的租约,还是因为养宠物而被要求离开目前的住所。以下是有关您作为租户的权利、如何找到合适且宠物友好的住所的提示,以及帮助纠正导致被驱逐或被放弃风险的行为问题的训练技巧。安大略省租户和房东的权利在寻找新住所时,如果租户有宠物(服务性动物除外),房东有权拒绝接受该租户。但是,一旦签订了租赁协议,房东就不能仅仅因为租户养了宠物就驱逐租户,即使原始租赁协议规定不允许养宠物。例外情况包括:• 宠物对房产造成损害。• 其他租户对宠物过敏。• 宠物造成过多噪音干扰。• 宠物的品种/物种天生危险,会危及其他租户。 • 公寓公司规定限制某些宠物(例如:只有一定大小的狗才允许生活在建筑物内)。
3. 养狗许可 宠物主人可以了解养狗许可、要求标签许可和费用豁免。 4. 工作机会 在这里,American Fork City 发布职位空缺,将求职者与支持不断发展的社区的职位联系起来。 5. 记录请求 居民可以通过网站根据 GRAMA 申请城市记录,以便轻松透明地访问公共文件。 6. 通行权许可证 提供通行权许可证指南和申请,以帮助管理建设 新年,新时间表!
这项研究探讨了怀孕母羊高密度饲养对其后代肠菌群的影响。将40个小尾羊绵羊随机分为两组,包括高密度组(1羊/m 2)和对照/低密度组(1羊/2m 2)。粪便样品,以进行高通量测序和多种意义分析。我们发现了肠道菌群在母羊和后代对不同饲养密度的反应。潜在有害细菌的数量(Ralstonia Pickettii,Ruegeria,Rhodobacteraceae等)在高密度组中增加了,而几种益生菌(振荡器,Akkermansia,Rusinococcaceae-UCG-010等)的丰度发现比对照组的明显小得多(p <0.05)。此外,高密度组中的肠道菌群随着年龄的增长而表现出更大的可变性,这表明住房密度的增加具有显着的相关性。在一起,怀孕绵羊的饲养密度不当会损害自己和后代,这不仅无法改善经济利益,而且会产生有害影响。这项研究可能为健康和可持续的绵羊繁殖和农业提供新的想法。
盐分是限制沿海滩涂土地利用的首要因素,根际微生物在增强作物抗逆性方面发挥着至关重要的作用,对环境变化高度敏感。水稻(Oryza sativa L.)是盐渍土改良的首选作物。本研究通过高通量测序技术,对不同盐胁迫处理下水稻根际土壤微生物群落进行了研究。研究发现,盐胁迫改变了水稻根际土壤细菌群落多样性、结构和功能。盐胁迫显著降低了水稻根际土壤细菌群落的丰富度和多样性。盐胁迫下,细菌群落中绿弯菌门、变形菌门和放线菌门丰度较高,厚壁菌门、酸杆菌门和粘球菌门相对丰度降低,拟杆菌门和蓝藻门相对丰度增加。水稻根际土壤细菌群落功能主要有化学异养、好氧_化学异养、光能营养等,其中化学异养和好氧_化学异养NS3(基土中添加3‰NaCl溶液)处理显著高于NS6(基土中添加6‰NaCl溶液)处理。本研究为开发水稻专用耐盐微生物菌剂提供了理论基础,为利用有益微生物改善滨海盐渍土土壤环境提供了可行的策略。
通过人工智能 (AI) 从大规模数字化数据集中提取信息在规模和变化速度上都是前所未有的。新的数据捕获源包括数字成像、GPS 定位和移动、高分辨率生物标记和生物传感器、实时自动捕获市场和环境数据。澳大利亚羊毛行业是评估此类新表型对盈利能力和先进农业系统影响的理想选择。该项目对人工智能(尤其是深度学习)的实用性进行了初步评估,以准确预测图像、生物标记和动物传感器输出的性能结果。我们开发了一种半自动化系统,该系统能够在田间/院子条件下拍摄高分辨率图像并将其链接到动物电子识别 (EID)。该系统还允许半自动记录体重。使用该系统,我们使用 4 个摄像机角度(即正面、顶部和背面)从 4072 只绵羊创建了 1,482,041 幅图像的图像库。所有绵羊在拍摄图像时都称重,并根据面部覆盖(1-5)、颈部皱纹(1-5)和身体皱纹(1-5)进行主观评分,并识别为 EID。使用图像子集,我们将数字信息应用于深度学习分析管道,特别是使用卷积神经网络 (CNN) 分析。使用 Keras (https://keras.rstudio.com) 和 Tensorflow (https://www.tensorflow.org) 开发模型。将数据细分为训练集、评估集和独立测试集,以预测 AI 预测相应表型的能力。使用侧面和顶部摄像头,预测算法可以分别以 86% 和 87% 的准确率预测体重,并且没有偏差。顶部和侧面摄像头的信息相结合,准确率为 89%。对于面部识别,AI 经过训练可以检测每只羊的头部形状和身体形状,只要羊来自相同的训练和测试集,准确率为 99%。使用每只羊的面部和身体图像的随机子集,AI 算法可以以 94% 和 98% 的准确率将匿名面部和身体图像与羊 EID 匹配,当同时使用面部和身体信息时,准确率为 99.7%。但是,当 5 个月后测试同一只羊的图像时,准确率会大大降低(<10%),除非两个时间点的图像都包含在训练数据集中(准确率提高到 90-98%)。使用皱纹评分的全量表(1-5)预测准确率较低,为 38%-58%。这表明,在面部识别的初始训练中,需要从同一只羊那里获取非常大的数据集,并随着时间的推移不断重复,以检测每只羊独特的生物特征。一旦建立了这样的初始训练数据集,面部识别就可以应用于新的人群。对于颈部和身体皱纹,AI 管道能够将动物分配到高皱纹或低皱纹类别,准确率为 73%-90%,具体取决于预测的相机角度和皱纹特征。AI 预测与手动评分的准确率相匹配,高和低皱纹评分的准确率为 98%-99%,扩展的 1-5 级皱纹评分的准确率为 57%-60%。对于面部遮盖评分,在 2 和 3 之间划分的初始分类器显示的结果略好于随机结果。这在很大程度上取决于种群中面部遮盖数据的分布,其中 87% 的动物被分配到中心类别,不到 1% 的动物属于极端类别。这没有为 AI 算法的训练和验证提供任何能力。为了测试 AI 在描述面部遮盖分数方面的实用性,ML 分类器经过训练可以区分面部遮盖分数 2 和 4。当从图像中裁剪出多个区域时,分类器的预测能力得到证明,准确率为 87%。使用更平衡的数据集,其中每个面部遮盖分数都得到同等代表,很可能区分所有 5 个面部遮盖分数。对生物传感器和生物标记技术的范围及其与深度学习 AI 技术相结合时对绵羊产业定义表型的可能效用进行了审查。全球在该领域的投资成果可能会转移到绵羊产业,并将加速数字化数据量的涌现,其中大多数数据都适合人工智能和深度学习管道。在生物传感器领域,动物加速度计和地理定位设备最有前景。在生物标记领域,基因组学被认为具有最大的潜在直接优势,因为样本可以在早期采集,不受生理状态的影响,并且可以从单个样本中为几乎所有性状提供表型和遗传预测值。大规模蛋白质组学(包括免疫学)和代谢组学研究都具有广阔的未来,因为它们与生理(生产/疾病)状态密切相关,并且适合通过人工智能进行大规模分析,并且可能为复杂性状提供低成本的表型分析,尤其是与动物生物传感器结合时。
商业禽蛋产量为 1181.6 亿只,散养禽蛋产量为 202.0 亿只。 • 2022-23 年全国肉类总产量预计为 977 万吨,
微生物转化和氧化有机材料(即异育)在海洋关键元素的地球化学循环中起着基本作用。通过它们的生长和活性,异养微生物降低了浮游植物在地表海中产生的许多有机物,从而导致营养素的再生和再分配,碳和碳的再分化回到水柱中。但是,大多数有机物在物理上太大,无法直接被异养微生物吸收。因此,许多异养分分泌外酶,这些外酶将细胞外的大分子分解成较小的底物,然后可以直接被细胞吸收。微生物用来分泌这些酶的生化系统的复杂性质表明,它们不太可能存在于最早的异育体中。在前研究前海洋中,异养微生物只能进入一小部分有机物,以便大多数死去的浮游植物生物量直接通过水柱传递并沉降到海底。在这里,我们综合了现有的地理学证据,以检查在早期海洋中没有外酶的情况下有机物的命运。我们建议,在外酶,有机物保存,金属的可用性和磷回收之前,在地球上的运行方式与在当代地球上的运行方式不同。
埃塞俄比亚是非洲牲畜数量最多的国家之一,畜牧业在埃塞俄比亚农业发展中发挥着重要作用。埃塞俄比亚牲畜数量估计为 5949 万头牛、3069.7 万只羊、3020 万只山羊、800 万头驴、216 万匹马、120 万头骆驼、40 万头骡子和 5949.5 万只家禽 [1]。然而,埃塞俄比亚畜牧业的发展受到广泛的地方性健康问题的阻碍,包括细菌性疾病、病毒性疾病和寄生虫感染 [2]。黑腿病(也是生产疾病)或黑腿病等动物疾病严重限制了该国的畜牧业,并通过影响动物健康和生产影响生计。黑腿病,又称牛犊病或黑犊病,是一种急性特异性传染病,常见于牛,有时也见于羊和猪,其特征是出现快速增大的肿胀,内含气体,发生在肩部、颈部、大腿、犊牛部位,有时也发生在横膈膜。6 个月至 2 岁之间的幼牛也易受感染 [3]。