对于感觉运动功能障碍患者来说,恢复手指和指尖的皮肤感觉对于实现灵巧的假肢控制至关重要。然而,通过人类皮层内微刺激 (ICMS) 实现局部和可重现的指尖感觉尚未见报道。本文表明,人类参与者的 ICMS 能够引发双手 7 个手指的感知,包括 6 个指尖区域(即每只手 3 个)。中位感知大小估计包括 1.40 个手指或手掌节段(例如,一个节段是指尖或手指下方的上手掌部分)。这通过更敏感的手动标记技术得到证实,其中中位感知大小对应于指尖节段的大约 120%。感知表现出高度的日内一致性,包括在盲手指辨别任务中的高性能 (99%)。几天内,感知的变化更大,75.8% 的试验包含受刺激电极的模态手指或手掌区域。这些结果表明,ICMS 可以在神经假体操纵物体期间传递局部指尖感觉。
使用小鼠和大鼠模型进行神经接口领域已经取得了进展,但这些模型的可互换性的标准化尚未建立。小鼠模型允许使用转基因、光遗传学和先进的成像方式,可用于检查与神经植入物本身相关的生物影响和故障机制。直接比较小鼠和大鼠模型之间的电生理数据的能力对于神经接口的开发和评估至关重要。这两种啮齿动物模型中最明显的区别是尺寸,这引起了人们对设备引起的组织应变作用的担忧。植入的微电极阵列对脑组织施加的应变被认为会影响长期记录性能。因此,了解植入物与组织尺寸比差异引起的组织应变的任何潜在差异对于验证大鼠和小鼠模型的可互换性至关重要。因此,本研究旨在调查电生理差异和预测设备引起的组织应变。从植入动物身上收集了 8 周的大鼠和小鼠电生理记录。使用有限元模型评估植入皮层内微电极的组织应变,同时考虑到两种模型在皮层深度、植入深度和电极几何形状方面的差异。与小鼠模型相比,大鼠模型在急性而非慢性时间点记录单个单元活动的通道百分比和每个通道记录的单元数量更大。此外,有限元模型还显示两种啮齿动物模型之间在组织应变方面没有预测差异。总的来说
几种昆虫与真菌具有亲生性关系。昆虫吃了真菌,但是在大多数真菌昆虫中,这种关联与昆虫不同,因为昆虫会操纵真菌,因此间接地衍生了营养与原本难以或无法利用的底物。Ambrosia甲虫(一些Scolytinae和几乎所有铂科)与真菌有关,使它们能够使用木质植物的木质部。真菌是幼虫和成人的主要食物,其关键作用可能在浓缩氮中,木材中的浓度很低。他们还提供固醇,例如麦角固醇,这对于甲虫的发育至关重要。树皮甲虫(大多数scolytinae)主要以木质组织的韧皮部为食,木质组织的营养素高于木质部。他们也有真菌关联,但它们的依赖性不太极端。甲虫 - fungus关联不是物种特异性的。几个真菌属与Ambrosia甲虫有关。最著名的两个是镰刀菌和Ambrosiella。大多数与树皮甲虫相关的人都在ceratocystis属中。切叶蚂蚁(Attini)取决于特定的幼虫食品真菌。工人蚂蚁从活植物中切下叶子和其他部位,并将其带到巢穴。在这里,蚂蚁咀嚼植物碎片,去除蜡质角质层,并可能清除植物表面上现有的微生物。使用粪便,他们将咀嚼的碎片建立到一个花园中,并从现有花园接种菌丝。真菌是仅发生在这些蚂蚁巢中的基本菌。宏观甲虫还在花园中种植真菌,称为真菌梳,由含有木材碎片的新鲜粪便材料制成。真菌在白蚁属中仅与白蚁有关。它会分解纤维素和木质素,并且在白蚁摄入时,它将其纤维素分解酶贡献给昆虫的酶。氮也被浓缩。在真菌的生殖结构中,白蚁食用,达到8%的干重;最初摄入的木材可能只有约0.3%的干重。termitidae,包括大近三甲虫,没有内共生原生动物。
