摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。
图1 Gemtuzumab Ozogamicin(GO)的细胞毒性作用通过GSK3α /β抑制剂在急性髓样白血病(AML)细胞系中增强。对于所有实验,在孵育48小时后确定特异性凋亡。所得数据表示为三个独立实验的平均值±标准偏差(SD)。(a)U937和Marimo细胞用所示浓度CHIR99021(CHIR)处理。凋亡是通过用膜联蛋白V和碘化丙啶(PI)染色来确定的,然后进行流式细胞仪。(b)U937和Marimo细胞用指定的CHIR浓度处理,然后通过蛋白质印迹分析β-蛋白酶的积累。(c)用2.5μg/ml,0.5μg/ml(对于THP-1)或单独使用的0.25μg/ml(对于NB4)或与CHIR结合处理。*,**和***分别表示P <0.05,P <0.01和P <0.001。(d)细胞用GO,CHIR或GO + CHIR处理。全细胞裂解物的聚(ADP-核糖)聚合酶(PARP)。β-肌动蛋白用作负载对照。(E)Marimo,KO52和U937细胞用GO处理AZD2858(A2848)或GO + A2858。使用学生的t检验确定了GO和GO + A2858之间观察到的差异的统计显着性。*和***分别表示p <0.05和p <0.001。(f)Marimo,KO52和U937细胞用GO处理AZD1080(A1080)或GO + A1080处理。使用Student t -test确定了GO和GO + A1080之间观察到的差异的统计学意义。*,**和***分别表示p <0.05,p <0.01和p <0.001。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2022 年 5 月 4 日发布。;https://doi.org/10.1101/2022.03.30.486457 doi:bioRxiv preprint
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2022 年 3 月 28 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
标题:皮层内微刺激脉冲波形和频率招募皮层神经元和神经纤维网激活的不同时空模式。作者:Kevin C. Stieger 1,2、James R. Eles 1、Kip A. Ludwig 3-5、Takashi DY Kozai 1,2,6-8 附属机构:1. 匹兹堡大学生物工程系,宾夕法尼亚州匹兹堡 2. 匹兹堡大学认知神经基础中心,卡内基梅隆大学,宾夕法尼亚州匹兹堡 3. 威斯康星大学麦迪逊分校生物医学工程系,威斯康星州麦迪逊 4. 威斯康星大学麦迪逊分校神经外科系,威斯康星州麦迪逊 5. 威斯康星转化神经工程研究所 (WITNe),美国威斯康星州麦迪逊 6. 匹兹堡大学神经科学中心,宾夕法尼亚州匹兹堡 7. 匹兹堡大学麦高恩再生医学研究所,宾夕法尼亚州匹兹堡 8. 匹兹堡大学脑神经技术中心宾夕法尼亚州匹兹堡研究所
保留所有权利。未经许可不得重复使用。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此版本的版权所有者于 2021 年 12 月 31 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
1 杜克大学生物医学工程系,北卡罗来纳州达勒姆 2 杜克大学电气与计算机工程系,北卡罗来纳州达勒姆 3 杜克大学神经生物学系,北卡罗来纳州达勒姆 4 杜克大学神经外科系,北卡罗来纳州达勒姆 5 西北大学生理学系,伊利诺伊州芝加哥 6 西北大学生物医学工程系,伊利诺伊州芝加哥 7 西北大学物理医学与康复系,伊利诺伊州芝加哥 8 芝加哥大学生物生物学与解剖学系,伊利诺伊州芝加哥 9 芝加哥大学计算神经科学委员会,伊利诺伊州芝加哥 10 芝加哥大学神经科学研究所,伊利诺伊州芝加哥 * 通讯作者:Warren M. Grill,博士,杜克大学生物医学工程系 Rm。 1427, Fitzpatrick CIEMAS 101 Science Drive, Campus Box 90281 Durham, NC, 27708, 美国 warren.grill@duke.edu 919 660-5276 电话 919 684-4488 传真
1美国凯克南加州大学医学院,美国加利福尼亚州洛杉矶2号病理学和实验室医学系,美国洛杉矶儿童医院,美国加利福尼亚州洛杉矶儿童医院,美国,美国,美国加利福尼亚州帕萨迪纳市,美国帕萨迪纳,美国帕萨迪纳,美国,美国,美国,美国,美国,美国,美国帕萨特州,美国,美国,美国帕萨特州帕萨特市,乔尼斯特州帕萨特市美国加利福尼亚州帕萨迪纳,美国加利福尼亚理工学院,美国5神经外科,凯克USC医学院,美国加利福尼亚州洛杉矶医学院,美国美国6 USC神经园林中心,凯克USC USC医学院,加利福尼亚州洛杉矶医学院,加利福尼亚州加利福尼亚州,美国7亨廷顿医学研究所,美国加利福尼亚州,美国加利福尼亚州,美国加利福尼亚州。
前言................................................................................................................................................ xvii
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。