近年来,逻辑器件的量产技术已经发展到 3nm 技术节点[1]。未来,英特尔、三星、台积电将继续利用 2nm 技术节点的新技术,如环栅场效应晶体管 (GAAFET) [2,3]、埋入式电源线 (BPR) [4–8],来优化逻辑器件的功耗、性能、面积和成本 (PPAC)。然而,横向器件的微缩越来越困难,流片成本已令各大设计公司难以承受。同时,垂直器件将成为未来 DRAM 器件中 4F2 单元晶体管的有竞争力的候选者 [9–13]。关于垂直器件的研究报道很多,大致可分为两条路线。“自下而上”路线利用金属纳米粒子诱导催化,实现垂直纳米线沟道的生长 [14,15]。然而该路线存在金属元素问题,如金污染,与标准CMOS工艺不兼容。另外,通过光刻和刻蚀工艺“自上而下”制作垂直晶体管器件的方法已被三星和IBM报道[16,17]。然而该路线也存在一些问题,例如器件栅极长度和沟道厚度难以精确控制,并且该路线中栅极无法与垂直器件的源/漏对齐。为了解决上述问题,提出了基于SiGe沟道的垂直夹层环绕栅极(GAA)场效应晶体管(VSAFET),其在栅极和源/漏之间具有自对准结构[18–21]。最近,垂直C形沟道纳米片
� 提高强度、硬度和耐磨性(整体硬化、表面硬化) � 提高延展性和柔软度(回火、再结晶退火) � 提高韧性(回火、再结晶退火) � 获得细小晶粒(再结晶退火、完全退火、正火) � 消除由冷加工、铸造和焊接过程中高温不均匀冷却引起的差异变形引起的内部应力(消除应力退火)
动态再结晶完成后,在附加塑性变形热的作用下,部分较大晶粒吞噬较小晶粒并融合为较大晶粒,导致晶粒长大。由于塑性变形热小于摩擦热输入,因此增加进给速率引起的晶粒尺寸增大较小。发生动态回复和连续动态再结晶,其特征是亚晶粒形成和大晶粒相变比例增加。随着应变的增加,大晶粒相变转变为大晶粒相变,大晶粒相变数量分数越大,表示再结晶程度越高。如图7所示,N0.1和NO.2的大晶粒相变数量分数大于NO.3,说明NO.1和NO.2的再结晶程度
金属热机械加工;金属连接;材料特性;微观结构-性能相关性;金属腐蚀和氢脆;金属晶体结构;再结晶和沉淀动力学;钢产品开发;故障分析;电脉冲;增材制造
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
为此,设计并制造了具有特定功能的专用DED弧设备进行研究。详细分析了热锻对316LSi不锈钢的影响,并验证了其在其他相关工业材料中应用的可行性。结论是,热锻可以诱导动态再结晶,增加成核点并阻止外延晶粒生长。因此,它有助于整体细化和均匀的微观结构,并提高机械性能。
AL4.5WT%CU是一种航空和汽车合金,在产业中广泛用于结构目的。这项工作的目的是评估AL4.5WT%Cu合金,常规和单向的两个不同的固化过程及其重结晶过程。首先,AL4.5WT%Cu合金被冷旋转锻造变形,然后在250至450°C的温度下处理热量。在54%,76%和91%的面积减少后获得了用于分析的样品。进行了光学显微镜,扫描电子显微镜和Vickers显微硬度的测试,以评估重结晶过程。结果表明,重结晶始于350ºC,因为传统样品在5分钟后呈现了完全的重结晶,而单向样品仅呈现部分再结晶。通常,对所有进行的所有分析都呈现出相似的结果。