天平可通过 USB 电缆连接到计算机,并被计算机识别为人机输入设备 (HID)。这样您的天平就变成了键盘,重量值可以直接从天平发送到 PC,而无需安装任何软件。无需额外的授权、应用程序或工具。这样,数据就可以直接写入开放程序,例如 Excel、Word、记事本等。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
活动功率、待机功率和深度掉电模式当芯片选择 (CS#) 为低时,设备启用并处于活动功率模式。当芯片选择 (CS#) 为高时,设备禁用,但可以保持在活动功率模式,直到所有内部周期(编程、擦除、写入状态寄存器)完成。然后设备进入待机功率模式。设备功耗降至 I CC1 。执行特定指令(进入深度掉电模式 (DP) 指令)时进入深度掉电模式。设备功耗进一步降至 I CC2 。设备保持此模式,直到执行另一条特定指令(从深度掉电模式释放和读取设备 ID (RDI) 指令)。当设备处于深度掉电模式时,所有其他指令都将被忽略。当设备未处于活动使用状态时,这可以用作额外的软件保护机制,以保护设备免受意外写入、编程或擦除指令的影响。
具有快速原型和重编程功能的光子综合电路(PIC)有望对众多光子技术产生革命性的影响。我们在低损耗相变材料(PCM)薄膜上报告了直接作用和重写光子电路。完整的端到端图片在一个步骤中直接写入激光写入,并没有其他制造过程,并且可以删除和重写电路的任何部分,从而促进快速设计的修改。我们证明了该技术用于不同应用的多功能性,包括用于可重构网络的光学互连织物,用于光学计算的光子横杆阵列以及用于光学信号处理的可调光滤波器。通过将直接激光写作技术与PCM相结合,我们的技术可以解锁可编程光子网络,计算和信号处理的机会。此外,可重写的光子电路可以以方便且具有成本效益的方式快速进行原型和测试,消除了对纳米化设施的需求,从而促进了更广泛的社区的道学研究和教育的扩散。
图 3 描述了功能块。用于感测温度的感测元件是 Si 双极晶体管。感测元件的模拟信号由 A/D 转换器转换为数字信号,然后由数字信号处理器进一步处理该信号并写入寄存器。可以通过串行总线接口(I²C 总线)访问寄存器。
(2) 法律规则中的表述,无论用作名词或动词,包括“文件”、“记录”、“归档”、“提交”、“递交”、“送交”、“发布”、“出版”、“写入”、“打印”等词语或具有类似效果的词语或表述,都必须解释为包括或允许与数据电文有关的形式、格式或行为,除非本法另有规定。
固件是在制造时添加的,用于在设备上运行用户程序,可以看作是允许硬件运行的软件。嵌入式固件用于控制各种硬件设备和系统的功能,就像计算机的操作系统 (OS) 控制软件应用程序的功能一样。固件可以写入只读存储器 (ROM)、可擦除可编程只读存储器 (EPROM) 或闪存中。