在最近的几十年中,现场观察和遥感都表明了热带南美冰川撤退的趋势(例如,Dussaillant等人,2019; Kaser,1999; Masiokas et al。,2020; Rabatel et al。,Rabatel et al。,2013; Seehaus等,2013; Seehaus et al。数十年甚至比全球平均值大(例如,Rabatel等,2013; Zemp等,2019)。先前的研究将这些质量变化与热带冰川的高灵敏度联系起来与水分相关变量的变化,包括沉淀,反照率和云彩,而不是直接与空气温度(例如Sicart等,2005)。Bradley等。 (2009)发现Quelccaya冰盖的质量变化与空气温度之间的统计相关性,但是,这些相关性可能是由于空气温度对降水阶段的间接影响所致(例如,Gurgiser,Marzeion,Nicholson,Ortner,Ortner和Kaser,2013年)。 因此,空气温度的升高不会直接升高,但可能会改变局部湿润状态。 此外,大多数研究都用于了解复杂的气候冰川Bradley等。(2009)发现Quelccaya冰盖的质量变化与空气温度之间的统计相关性,但是,这些相关性可能是由于空气温度对降水阶段的间接影响所致(例如,Gurgiser,Marzeion,Nicholson,Ortner,Ortner和Kaser,2013年)。因此,空气温度的升高不会直接升高,但可能会改变局部湿润状态。此外,大多数研究都用于了解复杂的气候冰川
或是一个周期性变量,它相对于不规则出现的项目振荡得如此之快,以至于在遇到任何项目时,震颤水平实际上是随机的。这些区别可以通过与山湖水深的类比来进一步说明。发展趋势是指冰盖长期前进或后退以及渐进淤积对深度的影响; 涌浪是指潮湿或干旱期的影响以及潮汐效应; 震颤是指湖面上的涟漪。应该注意的是,震颤效应类似于 Spearman (1927) 和 Hull (1952) 讨论的振荡效应。
使用气候模型登山者-X,我们提出了一种有效的方法,可以吸收涵盖现在22000至6500年的最后一次脱位的表面温度的时间演化。数据同化方法结合了数据和管理气候系统的基本动力学原理,以提供系统的状态估计,这比仅使用数据或单独模型可以获得的系统要好。在应用集合Kalman滤波器方法时,我们利用并行数据同化框架(PDAF)中的进步,该框架(PDAF)提供了并行数据同化功能,计算时间的增加相对较小。我们发现数据同化溶液在很大程度上取决于腐烂的冰盖的背景演变,而不是同化的温度。两种不同的冰盖侦察结构会导致不同的冰川融化病史,影响了大规模的海洋结构,从而影响了表面温度。我们发现,数据同化的影响在区域尺度上比全球平均值更为明显。尤其是,数据同化在千禧一代变暖和冷却阶段的效果更强,例如BØlling-AllerØD和年轻的Dryas,尤其是在具有异质温度模式的高纬度地区。我们的方法是对多千年时间尺度进行全面的古平方分析迈出的一步,包括将可用的古气候数据纳入了代表区域气候的不确定性。
灾害和全球环境变化——印度空间研究组织和喷气推进实验室合作测试了 L 波段和 S 波段的机载合成孔径雷达 (SAR),该雷达类似于计划于 2022 年发射的星载双频 SAR。机载研究是测试 NISAR 的新硬件系统以及验证频率是否同步和数据是否优化的关键——为对地球复杂的生态系统扰动进行前所未有的详细测量铺平了道路,包括冰盖崩塌和地震、海啸、火山和山体滑坡等自然灾害。
摘要:南极半岛 (AP) 周围地区正面临快速的气候和环境变化,目前尚不清楚这对大陆架底栖微生物群落的影响。在本研究中,我们使用 16S 核糖体 RNA (rRNA) 基因测序研究了对比海冰覆盖对 AP 东部大陆架沿线五个站点表面沉积物中微生物群落组成的影响。无冰期较长的沉积物中的氧化还原条件以普遍存在的含铁区为特征,而冰层覆盖严重的站点则存在相对较宽的上部含氧区。低冰盖站位主要由脱硫杆菌门(主要是 Sva1033 、脱硫杆菌和脱硫球菌)、粘球菌和 Sva0485 微生物群落组成,而重冰盖站位则以伽马变形菌、α变形菌、拟杆菌和 NB1-j 为主。在含铁区,Sva1033 是所有站位脱硫单胞菌目中的优势成员,与其他 11 个分类单元一起,与溶解铁浓度呈现显著的正相关,表明其在铁还原中发挥重要作用或与铁还原剂存在生态关系。我们的研究结果表明,海冰覆盖及其对有机碳通量的影响是底栖微生物群落变化的主要驱动因素,有利于有机物通量增加的站位出现潜在的铁还原剂。
Prepp Mains Booster:重要的地球物理现象,如地震、海啸、火山活动、气旋等,地理特征及其在关键地理特征(包括水体和冰盖)中的位置变化 背景: 来自果阿国家极地和海洋研究中心和果阿大学地球、海洋与大气科学学院的一组研究人员进行的一项新研究(《自然通讯》)生成了阿拉伯海的自生钕同位素记录,并重建了印度洋深水环流 (DWC) 记录,记录时间从 1130 万年前(中新世)到 198 万年前(更新世)。
37 Langway(1958; 1967)。 38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -37 Langway(1958; 1967)。38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -38 Langway(1967,p。7)。39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -39 Martin-Nielsen(2016年,第95页)。40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。42“冰盖”是大于50,000 km 2的圆顶冰川。这种类型的冰川仅存在于格陵兰和南极。43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。(2010年,第33页)。有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。86 - 100)。44 Martin-Nielsen(2013年,第87 - 88)。45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。(1958年1月28日),给威利·丹斯加德的信; Renaud,A。([[1962年11月]),Egig 1957 -
我们工作的重点是改善气候模型中异常的解释性,并促进我们对北极熔体动态的理解。北极和南极冰盖正在迅速融化并增加了淡水径流,这显着导致了全球海平面上升。了解在这些地区驱动融雪的机制至关重要。ERA5是极地气候研究中广泛使用的重新分析数据集,可提供广泛的气候变量和全球数据同化。但是,其融雪模型采用了一种能量不平衡的方法,可能会过度简化表面熔体的复杂性。相反,冰川能量和质量平衡(GEMB)模型结合了其他物理过程,例如积雪,FIRN致密化和融化液化/重新冻结,提供了表面熔体动力学的更详细的表示。在这项研究中,我们专注于分析格陵兰冰盖的表面融雪材料,并使用ERA5和GEMB模型中异常熔体事件的特征归因。我们提出了一种新型的无监督归因方法,利用反对解释方法来分析ERA5和GEMB中检测到的异常。我们的异常检测结果通过模仿地面真实数据进行验证,并针对既定的特征排名方法进行了评估,包括XGBoost,Shapley值和随机森林。我们的归因框架标识了每种模型背后的物理和气候特征驱动熔体异常的特征。这些发现证明了我们的归因方法在增强气候模型中异常的解释性并促进我们对北极熔体动力学的理解方面的实用性。
今年夏天,被分配到机动潜水和打捞部队 (MDSU) 1 的海军潜水员在世界上最偏远的地区之一 — — 北极圈的极地冰盖下接受了训练。海军首席潜水员 Zachary Hanson,MDSU-1 潜水长和他的团队登上西雅图的破冰船 USCGC Healy (WAGB 20),与美国海岸警卫队潜水员一起进行冰潜作业。在船上期间,汉森和他的团队还对他们随身携带的减压舱进行了培训。汉森说:“他们 [海岸警卫队] 没有减压舱,但他们正在得到一个。我们让他们使用我们的减压舱来完成海军研究局 (ONR) 的这次任务,我们还帮助培训海岸警卫队潜水员如何操作、维护和运输减压舱。” 像这样的联合训练行动有助于建立各军种之间的互操作性,并在北极圈这样具有挑战性的环境中创新新的战术、技术和程序。 ONR 和 Healy 的任务是观察北极冰层。他们使用配备多种设备的固定气象浮标来监测海洋、天气和冰层,以更好地了解北极环境、它对世界的重要性以及如何保护它。在任务期间,汉森了解了北极多样化的生物圈,这些生物圈维持着巨大冰盖上方和下方的生命。“大多数人会认为北极的冰层下不会有任何生命,但当我们在那里时,我们看到了水母和某种虾或磷虾,”汉森说。MDSU-1 团队是唯一有资格支持此类任务的团队。汉森和他的团队使用了旨在保护潜水员免受
1.冰冻圈统称地球系统中含有冻结状态水的元素,包括固体降水、积雪、海冰、湖冰和河冰、冰川、冰盖、冰盖、永久冻土和季节性冻土。冰冻圈是全球性的,存在于所有纬度和大约 100 个国家。认识到对世界冰雪资源过去、现在和未来状况的权威信息的需求日益增长,WMO 大会于 2007 年决定与其他 WMO 计划和国际伙伴组织及计划合作,着手开发全球冰冻圈监测 (GCW)。2011 年,第十六届 WMO 大会决定实施 GCW。2011 年 11 月 21-24 日,全球冰冻圈监视网 (GCW) 首次实施会议在瑞士日内瓦 WMO 总部举行。2.WMO 大会于 2011 年批准的 GCW 实施战略 (IS) 为首次实施会议的讨论奠定了基础。IS 提供了 GCW 背景、用户需求概述、GCW 使命和目标,并提出了 GCW 实施流程,包括建议的初始任务。本次会议旨在吸引参与者并最大限度地发挥现有活动和合作伙伴及其他组织提出的新合作理念的益处,以确定 GCW 的具体方向、任务、服务、产品、贡献和初始管理结构,这将有助于制定 GCW 实施计划。可以通过为会议准备的 GCW 文档计划访问和下载文档和演示文稿(参见: