管理摘要人工智能(AI)已成为金融界改变游戏规则的人,完全改变了决策的制定方式,尤其是对于所有年龄段的人。本评论旨在研究AI如何影响财务决策,涵盖评估风险,使用算法进行贸易以及对财务的个性化建议之类的内容。通过阅读大量文章,研究论文和报告,本评论试图展示AI如何影响每个人,从使用数字应用程序的年轻人到试图找出股票市场的老年人。通过浏览所有这些信息,该评论希望解释AI如何更快,更灵活,更具创新性,以表明在这个数字时代的财务如何变化。关键字:人工智能,财务决策,机器学习,金融科技,风险管理。引入人工智能(AI)进入金融服务,做出决定已完全不同。这全都与自动化有关,使用数据做出选择并提供个性化解决方案。这不仅适用于精通技术的年轻人或经验丰富的投资者 - 所有年龄段的人都在加入。在这篇评论中,我将讨论AI如何影响财务决策,并显示其如何影响不同年龄段的人群。人工智能(AI)一词人工智能(AI)描述了创建可以进行通常需要人类智力的操作的计算机系统的过程。学习,思考,解决问题,感知,理解自然语言以及与周围环境互动是这些任务的一些例子。人工智能(AI)使用数据,算法和计算能力来模仿人类智能过程。许多行业,包括银行业,
全面贯彻党的十九大和十九届二中、三中、四中全会精神,落实党中央、国务院关于新一代人工智能发展的决策部署,坚持市场驱动与政府引导相结合,按照“统筹规划、分类施策、市场主导、急用先行、跨界融合、协同推进、自主创新、开放协作”的原则,立足国内需求,放眼国际,建立新一代人工智能国家标准体系,加强标准顶层设计和宏观指导。加快创新技术与应用转化为标准,加强标准实施和监督,推动创新成果与产业深度融合。注重对智能制造、工业互联网、机器人、车联网等相关标准体系的统筹和支撑。深化人工智能标准国际交流合作,注重国际国内标准协同,充分发挥标准对人工智能发展的支撑引领作用,保障高质量发展。
化学教学大纲 1.化学计量学 化学式和摩尔概念。阿伏伽德罗常数。化学反应和方程式。反应中的质量关系。计算。 2.原子理论 原子的核模型。同位素。电子排列:壳层、亚壳层、轨道。电子排布符号。 3.元素周期表 电子排布和元素周期表。原子的价态排布。区块(s、p、d、f)和群体。周期趋势:物理性质、化学性质。 4.键合 离子键合。共价键合。分子轨道和杂化。分子和离子的形状。分子间力。氢键。金属键合。 5.物质状态 状态变化和动力学理论。气体。气体低。 6.能量学 放热和吸热反应。标准反应焓变。焓变计算。Hess定律。熵和自由能。反应的自发性。 7. 动力学 反应机理:碰撞理论。活化能。反应速率、速率表达。影响反应速率的因素。反应顺序和半衰期。 8. 平衡定律 平衡定律。平衡定律的应用。涉及平衡常数的计算。 9. 溶液 溶解度和溶度积常数。溶液浓度。解离。解离(电离)常数和解离度。奥斯特瓦尔德稀释定律。 10. 酸和碱 酸和碱的定义:阿伦尼乌斯、布朗斯台德-洛瑞、路易斯。酸和碱的性质。强酸和弱酸和碱。pH 值,pH 值计算。指标。
根据“ SFDR授权法规的问和答案(Q&A)(委员会授权法规(EU)2022/1288)”,日期为2022年11月17日,考虑到“ 2023年4月12日的咨询委员会”,欧洲委员会的共同委员会的咨询委员会,授权的第25、26和27点。 (PAI 1除外),所有金融产品的所有直接和间接投资都为投资公司或主权提供资金。
随着人工智能产品的普及,人类和人工智能越来越多地合作做出决策。为了使这种类型的合作取得成功,人类需要了解人工智能的能力,以便有效地校准他们的信任。在这些合作关系中,以人类可以理解的方式解释决策和预测至关重要,以鼓励信任校准。可解释人工智能领域专注于将可解释性融入人工智能,但旨在使人工智能模型更具可解释性。因此,这项研究通常从以模型为中心的角度而不是以人为中心的角度来处理解释。与此同时,行业研究人员已经制定了指导方针,以帮助界面设计师有效地生成用户友好的解释。然而,这些指导方针通常过于宽泛,无法有效指导行业设计师的日常工作。我们的研究通过两种方法解决了这一差距:一个实证实验,研究人们如何回应解释以及哪些类型的解释对信任校准最有帮助;以及一个教育资源,帮助行业设计师了解用户可能有什么问题,以及使用环境如何影响他们可能使用的解释。我们的实验结果表明,解释并不总是有助于信任校准,实际上可能会损害信任校准,尤其是面对自我能力较低的新手用户时。我们对行业设计师进行的探索性访谈和可用性测试表明,人们渴望一种全面但易于访问的教育资源,以转化我们实验等研究并指导可解释的 AI 产品界面的设计。关键词
本报告中表达的意见基于 AECI Plant Health (AECI) 向 SRK Consulting (South Africa) (Pty) Ltd (SRK) 提供的信息。本报告中的意见是根据 AECI 的具体要求提供的。SRK 已尽一切努力审查所提供的信息。虽然 SRK 已将提供的关键数据与预期值进行了比较,但审查结果和结论的准确性完全取决于所提供数据的准确性和完整性。SRK 不对所提供信息中的任何错误或遗漏负责,也不承担因商业决策或由此导致的行动而产生的任何间接责任。本报告中提出的意见适用于 SRK 调查时存在的现场条件和特征,以及合理可预见的条件和特征。这些意见不一定适用于本报告日期之后可能出现的条件和特征,因为 SRK 对此事先不了解,也没有机会进行评估。
本指南草案标志着一个关键里程碑,它是 FDA 以患者为中心的药物开发 (PFDD) 方法指南系列 1 的最后一部分,旨在描述一条可持续的途径,将患者输入作为数据纳入医疗产品开发和决策。我们赞赏该机构在整个系列中努力提供灵活性,包括讨论各种方法,这些方法可以量身定制以制定适合目的的策略。例如,当前的指南草案描述了几种构建基于 COA 的终点的潜在方法,例如多组分和个性化终点,这些终点对于评估具有多种临床表现的疾病的治疗效果很有价值。然而,该指南对审查人员如何评估 COA 数据作为效益风险评估和监管决策中全部证据的一部分提供了有限的见解。目前尚不清楚指南 4 中包含的原则是针对用于标记声明的 COA 终点,还是旨在更广泛地应用,例如,用作评估安全性和耐受性的终点的 COA。我们敦促该机构更加具体地规定用于评估 COA 数据的完整性和临床解释的期望和标准。
摘要1摘要(葡萄牙)2认可3目录5图7缩写8术语9 1.简介10 1.1。背景10 1.2。问题语句12 1.3。研究目的14 1.4。研究问题15 1.5。划界15 1.6。论文的轮廓16 2。理论框架17 2.1。人工智能技术及其在军事决策过程中的应用17 2.1.1。人工智能的定义17 2.1.1.1。弱AI和强AI 18 2.1.2。AI集成的水平20 2.1.2.1。 人类内部和自治AI 20 2.1.2.2。 Black-Box AI和可解释的AI 20 2.1.3。 军事决策过程22 2.1.4。 军事决策过程中AI技术整合的当代范式23 2.2。 对AI 25 2.2.1的感知,假设,期望和信任。 技术接受模型:扩展到AI 25 2.2.2。 技术帧27 2.2.3。 对AI的信任及其对MCDMP 28 28 2.2.3.1集成的影响。 信任的定义29 2.2.3.2。 信任AI:信任的维度30 2.2.3.3。 信任AI:技术的可信度30 2.3。 结论31 3。 方法论33 3.1。 研究方法:定性研究33 3.1.1。 时间范围34 3.2。 研究设计:选择和选择34 3.3。 数据收集方法35AI集成的水平20 2.1.2.1。人类内部和自治AI 20 2.1.2.2。Black-Box AI和可解释的AI 20 2.1.3。军事决策过程22 2.1.4。军事决策过程中AI技术整合的当代范式23 2.2。对AI 25 2.2.1的感知,假设,期望和信任。技术接受模型:扩展到AI 25 2.2.2。技术帧27 2.2.3。对AI的信任及其对MCDMP 28 28 2.2.3.1集成的影响。信任的定义29 2.2.3.2。信任AI:信任的维度30 2.2.3.3。信任AI:技术的可信度30 2.3。结论31 3。方法论33 3.1。研究方法:定性研究33 3.1.1。时间范围34 3.2。研究设计:选择和选择34 3.3。数据收集方法35
随着各国政府越来越多地探索和投资人工智能和自动决策系统,我们需要采取措施确保这些快速发展的技术在公共服务的特殊环境中得到适当使用。在许多国家,COVID 创造了一个信任度提高的泡沫,这个泡沫可以说已经破灭了,在一个对公共机构前所未有的不信任的时代(但即使在信任度很高的时代),服务速度更快或更具成本效益是不够的。本文为政府系统(技术平台、运营、文化、治理、参与等)提出了建议,这些建议将有助于提高公众对公共机构、政策和服务的信心和信任,同时履行公共部门的特殊义务和责任。
近年来,人们对用量子力学语言来制定决策理论的可能性产生了浓厚的兴趣。在书籍 [ 1 – 4 ] 和评论文章 [ 5 – 8 ] 中可以找到大量关于此主题的参考资料。这种兴趣源于经典决策理论 [ 9 ] 无法遵循真实决策者的行为,因此需要开发其他方法。借助量子理论技术,人们有望更好地表征行为决策。有多种使用量子力学来解释意识效应的变体。本评论的目的不是描述现有的变体,因为这需要太多篇幅,可以在引用的文献 [ 1 – 8 ] 中找到,而是对作者及其同事提出的方法进行概述。这种方法被称为 [ 10 ] 量子决策理论 (QDT)。在本综述中,我们仅限于考虑量子决策理论,而不会涉及量子技术其他应用趋势,例如物理学、化学、生物学、经济学和金融学中的量子方法、量子信息处理、量子计算和量子博弈。显然,一篇综述无法合理地描述所有这些领域。尽管量子博弈论与决策理论有相似之处,但量子博弈的标准处理[11-15]与本综述中提出的量子决策理论的主要思想之间存在重要区别。在量子博弈论中,人们通常假设玩家是遵循量子规则的量子设备[16,17]。然而,在量子决策理论[10]的方法中,决策者不一定是量子设备,他们可以是真实的人。QDT 的数学类似于量子测量理论中的数学,其中观察者是经典人类,而观察到的过程则以量子定律为特征。在 QDT 中,量子理论是一种用于描述决策过程的技术语言。量子技术被证明是一种非常方便的工具,可以描述现实的人类决策过程,包括