太阳能光伏(PV)细胞已成为生产绿色电力的主要技术。这项创新利用了直射的阳光来产生动力,其安装灵活性已在PV面板上进行了大量投资。尽管有许多好处,但这些细胞因细胞温度升高而导致的效率下降而阻碍。因此,研究人员对旨在使用多种技术增强光伏细胞性能的可能解决方案进行了广泛的研究。本评论论文对光伏面板的冷却技术进行了彻底的分析。它涵盖了被动和主动冷却方法,包括水和空气冷却,相变材料以及各种不同的方法。在每个类别中,它都深入研究详细的子类别,例如蒸发冷却,浸入水,浮动系统,水管,冷却通道,喷水机,喷射撞击,地热冷却以及通过PV设计增强的自然对流。它还使用冷却管,散热器和空气收集器覆盖强制对流,以及相变材料(PCM),纳米流体,辐射冷却,热电方法,热管,热泵,热泵和其他创新技术的整合。用特定的示意图说明了每种方法,并进行了彻底讨论和比较。此外,本文介绍了适用于光伏面板的这些冷却方法的原始分类系统,为未来的研究提供了宝贵的指导,并洞悉提高效率。关键字:综合;比较;审查;光伏面板;冷却技术。
摘要。大量能源消耗吸引了利用可再生能源的关注,其中最重要的是在炎热气候中的太阳能应用,以满足冷却和功率的需求。本研究的新颖性在于在弹出器冷却循环中将瞬态自我分析应用于两个喷射器和两个蒸发器。Furthermore, the study uses solar data specific to Tehran in Iran.第三,通过吸收冷凝器热部位的废热,热电发电机系统提供了运行泵送和电气控制系统所需的能量,从而创建了一个完全自主的系统。Thermodynamic model have been designed using EES software.桑迪亚国家实验室(SNL)和国家可再生能源实验室(NERL)的结果验证了抛物线槽太阳能模型。The comparison with the experimental data collected by SNL during the LS-2 tests on the AZTRAK platform has shown good agreement.Weather conditions were analyzed as transients using Meteonorm software.The results show that the solar system produced the most heat in June and the least in December, with 816 kW and 262.3 kW, respectively.Additionally, production power and cooling in June are 5.9 kW and 86 kW, and in December: 2.7 kW and 28 kW.Regarding exergy destruction percentages, the solar collector has 86% and the storage tank has 6.5%.
2 Université Gustave- Eiffel, Laboratoire MSME UMR CNRS 8208, Université Paris-Est Marne-La-Vallée, Marne-La-Valle 8 F-77454, France 9 10 *Corresponding author: moussa.elidi@gmail.com 11 12 Abstract: This paper investigates the thermal management performance of a novel system using phase change material 13 (PCM) composite for锂离子电池的细胞尺度。开发了一个实验平台来研究锂离子细胞中的热现象14。该系统是根据热通量测量设计的。细胞嵌入PCM复合15材料中。将组件放在3D打印制造的铝制模具中。评估了添加金属16泡沫和强制对流的影响。结果表明,所提出的系统允许在最佳工作温度(25°C)周围保持Li-17离子电池的温度。还发现,添加铝泡沫可以对细胞进行更高的18效热管理。19 20关键字:相变材料(PCM),电池热管理系统(BTMS),金属泡沫,锂离子21 22命名法23
三重QX Cyclotronweg 1 2629HN DELFT荷兰电话号码:+31 - (0)15 251 30 40 40传真号码:+31-(0)15 251 30 41 info@mpmoil.nl
然后,本文将使用多个阶段的涡轮机提出一个创新的冷冻冷却概念,该概念基于相同的工业涡轮增压器技术,可以在20-30 Kelvin温度范围内提供约1 kW的冷却能力(或在65 K时为5-6 kW),足以冷却10 mW的风力涡轮机。将来的其他版本可能在4 K处运行。它基于Air Liquide在成熟的反向涡轮增压涡轮增压 - 布雷顿制冷技术方面的丰富经验(从国际空间站,HTS地面应用于LNG船舶运营商)和大型科学工具(Cern-LHC,Iter,Iter,slac,slac等)。
浸入式冷却越来越重要。在浸入冷却系统中,电子组件直接放入容器中,并浸入介电液中。由浸入的成分产生的热量直接被液体吸收。与空气或间接液体(水 - 糖)冷却相比,该技术具有多个优势。首先,浸入冷却液具有优质的传热能力。这些流体具有较高的热导率,可以非常有效地散发热量,从而获得更好的温度控制,并使系统以非常高的功率密度运行而不会过热。这种效率提高同时导致能源消耗的减少。最后,均匀冷却可最大程度地减少热应力,从而延长了组件的寿命。
空调所需的电力在全球范围内飙升。吸收冷却器代表使用热量而不是电力的经典蒸气压缩系统的替代方法。但是,到目前为止,由可再生地热热提供的吸收冷水机几乎没有受到关注。本文使用热的地热流体(通常在80 - 110°C的范围内)引入系统,以通过单效吸收冷水机和家用热水(DHW)通过热交换器产生冷却。它考虑了位于法国加勒比岛马提尼克岛的一家酒店。每个子系统的电消耗已得到充分估计。本文的独创性是两次:i)该系统是在考虑动态条件的TRNSYS软件中建模的。考虑了几种情况,具体取决于地热温度,质量流量,远程偏差和需求大小。研究的系统似乎比经典的蒸气压缩冷水机和DHW的锅炉的组合更昂贵。但是,它可以显着降低所提供能量的CO 2含量,尤其是在一个从化石燃料中产生大多数电力的岛上。地热井的接近度以及使吸收发生器(此处用于DHW生产)的温水的使用似乎是系统相关性的关键因素,以及更热的地热液(例如,110°C而不是80°C)。
在合金的增材制造过程中,在局部热与物质相互作用后,熔融材料会迅速凝固。然后,在剩余的构建时间内,它会在固态下经历冷却/加热循环,即固态热循环。固态热循环期间产生的热机械力可以触发大量微观机制,从而带来显著的微观结构变化,决定最终成品部件的机械性能。在这项工作中,我们的目标是利用透射电子显微镜深入了解固态热循环驱动的奥氏体不锈钢中亚微米级沉淀物的演变。为此,从预制样品中提取薄膜薄片,并在透射电子显微镜内进行不同的原位固态热循环。固态热循环旨在了解温度幅度和速率、热循环次数和类型以及后处理退火对沉淀物演变的影响。每次热循环前后的高角度环形暗场成像和能量色散 X 射线光谱可深入了解不同热循环因素对沉淀物成分、尺寸和形态演变的贡献。常见趋势包括 Mn 和 Si 从富含 Mn-Si 的氧化物扩散到周围基质中,Cr 环在氧化物沉淀物周围形成,S 在非氧化物沉淀物中重新分布。在 (Upadhyay et al., Sci. Rep. 11 (2021) 10393) 中研究的原样样品中也发现了类似的 Cr 环和 S 分布,这有力地支持了这些结果相对于增材制造过程中发生的情况的代表性。
本研究中使用的石墨烯是一种基于三维碳(3D-C)的纳米结构泡沫状 TIM,具有相对较高的固有热导率(~80 W/mK)。[6] 中介绍了该材料的制备工艺和物理特性,以镍泡沫为模板来生长 GF,在环境压力下通过在 1,000 °C 下分解 CH4 将碳引入其中,然后在镍泡沫表面沉淀石墨烯薄膜。由于热膨胀系数的差异,石墨烯薄膜上形成了波纹和皱纹。在用热 HCl 溶液蚀刻掉镍结构之前,在石墨烯薄膜表面沉积一层薄薄的聚甲基丙烯酸甲酯 (PMMA),作为支撑,以防止石墨烯网络在此过程中坍塌。随后用热丙酮小心地去除PMMA层,即可得到连续、相互连接的石墨烯三维网络整体。