摘要 热能存储 (TES) 和需求响应 (DR) 通过弥合制冷能源需求与生产之间的差距,为减少电力消耗、碳排放、投资和制冷能源的运营成本提供了独特的优势。为了向政策制定者、系统规划者、投资者、清洁能源倡导者和其他相关方提供全面的指导,以加速 TES 和 DR 技术的发展,本文全面概述了最常见的制冷用途的 TES 和 DR 策略,涵盖了工作原理、优势、发展阶段、技术限制、适用应用和向低碳经济转型的潜在增长机会。还讨论了研究方向和政策建议,以更好地开发和部署 TES 和 DR,特别是在亚洲。能源用户和系统规划者可以选择最合适的 TES 和 DR 技术来减少其能源系统的电力消耗和碳排放,而政策制定者、投资者和清洁能源倡导者可以为消除 TES 和 DR 部署的经济、监管或客户相关障碍做出贡献,这将共同帮助充分释放 TES 和 DR 技术巨大的经济和环境潜力。关键词:热能存储、需求响应、相变材料、低碳、清洁能源 JEL分类:O、O3、O31
固体光学制冷或固体激光冷却是一项突破性技术,通过用合适波长的红外激光照射稀土离子掺杂晶体,可达到低温(低于 120 K -150 K)。在基态和激发离子态之间的间隙波长附近激发这种晶体,可以主要刺激反斯托克斯发射过程,即晶体重新发射比其吸收更多的光,从而冷却下来。基于这一革命性原理的低温冷却器有可能简化或实现许多仪器应用,而传统机械低温冷却器(例如:斯特林/脉冲管、焦耳-汤姆逊、涡轮-布雷顿)的振动和笨重是这些应用的障碍。历史上主要的目标应用是冷却地球观测卫星上的探测器,特别是最敏感的仪器,因为振动会对性能产生不利影响,或者冷却微型卫星或纳米卫星等小型卫星,因为这些卫星的有效载荷有限,相关限制也很强。这篇论文是法国液化空气先进技术公司 (Sassenage) 与法国国家科研中心 (格勒诺布尔) 尼尔研究所之间的合作项目。我的论文的第一个目标是首次在欧洲展示用于太空应用的激光低温冷却器原型的运行。三年内,我们成功设计、开发和运行了能够达到低温的激光冷却器实验室原型,从而使这项技术达到了 TRL 3 成熟度。比萨大学为我们的实验借出的掺杂 7.5% 镱的 YLiF 4 冷却晶体能够在约 30 分钟内冷却至接近 130 K (-153 °C) 的温度,吸收 10 W 激光功率。在我们的系统中,激光通过光纤供给冷却晶体,以便考虑到卫星应用中的一些限制,这在世界范围内尚属首创。我的论文的第二个目标是研究激光低温冷却器对未来地球观测卫星的可行性和适用性。基于小型低地球轨道红外观测卫星的电源架构,我们在整个卫星的尺寸、重量和功率方面比较了激光低温冷却器解决方案与基于脉冲管的解决方案的平衡。我们表明,激光低温冷却器是一个紧凑型系统,除了其他优点之外,还可以节省有效载荷部分的内部体积和质量。由于该技术具有光学和非接触特性,激光低温冷却器体积小、无振动,热损失小。因此,这项工作为未来太空应用开辟了新的光学低温冷却器系列。
•地热热泵(GHP)与空气源热泵(ASHPS)相似,使用冷藏周期进行加热或冷却的热量 - 但使用地面作为热量和水分,而不是户外空气,而不是室外空气•地热供暖和冷却技术可以降低高峰供应,并降低峰值电力,并降低了弹性,并提高了弹性,并提高了弹性,并增加了弹性,并降低了弹性,并降低了弹药率,并降低了弹性,并降低了弹性,并降低了弹药率,并降低了高速公路,并降低了高速公路,并降低了高速公路,并将其降低。建筑物脱碳技术之间的多管齐下和独特的价值主张•虽然许多情况下的GHP系统对所有者具有终生的净净值,但相对于其他一些其他供暖和冷却解决方案,单个建筑物中GHP的前期(或首次)成本可能很高。仍然在某些情况下,GHP可能是最低的首要成本选择。
凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定
摘要:热管理是最苛刻的检测器技术和微电子学的未来的主要挑战之一。微流体冷却已被提议作为现代高功率微电子中热量耗散问题的完全集成解决方案。基于硅的微流体设备的传统制造涉及用于表面图案的先进的,基于面膜的光刻技术。此类设施的有限可用性阻止了广泛的开发和使用。我们演示了无掩模激光写作的相关性,以有利地替换光刻步骤并提供更原型的过程流。我们使用脉冲持续时间为50 ps的20 W红外激光器雕刻并钻出525 µm厚的硅晶片。阳极键与SIO 2晶片用于封装图案表面。机械夹紧入口/出口连接器完成了完全操作的微动设备。该设备的功能已通过热流体测量验证。我们的方法构成了一个模块化的微观分化解决方案,该解决方案应促进针对共同设计的电子和微流体的新概念的原型研究。
基于电源材料的制冷系统被认为是当前基于蒸气压缩设备的潜在替代方案。这些系统提供更接近Carnot限制的晶状体,同时还与微型化,紧凑性和集成到电子设备和可穿戴设备中。已经提出了几种原型,主要依靠机械和流体运动进行传热,这阻止了这些系统达到更高的操作频率,良好的热接触和低损失。一动不动的电源固态设备已经概念化了,但是它们的相对复杂性已阻碍了原型。在这项工作中,我们研究了依靠热电开关来控制热流的固态电局冷却器的性能。我们的设备操作模式通过通过热开关被动吸收热量来最大程度地减少能源消耗。在稳态热传播模型之后,评估了一组广泛的参数,覆盖运行温度,材料特性,几何特征,操作频率和材料极化损失,评估了一组广泛的参数,评估了施加的电流,吸收的热量,功耗和性能。我们估计COP高于1的COP,最大温度(对于不同的材料特性,几何因素或EC损失)和绝热温度的变化比施加的温度跨度高1 k。较高的温度跨度在6至10 K的率COP之间的0.1阶段,导致功耗显着增加。这些结果旨在在选择材料,温度和几何形状方面指导对这些固态设备的研究。
定义了一种用于评估电热 (EC) 材料冷却效率的新品质因数,其中将热性能与材料的损耗共同考虑。使用专门开发的基于柔性热敏电阻的测量装置,直接测量 P(VDF-TrFE-CFE) 电热聚合物薄膜的热效应和损耗。利用这些数据与新的品质因数,可以推断出所研究的 EC 材料在实际工作条件下的预期冷却效率。介电损耗是实现所需冷却性能的主要限制因素。这一发现表明,除了研究巨大的热响应之外,还必须将减少材料损失视为研究用于冷却应用的最佳 EC 制冷剂的关键目标。最后,概述了一些减少损失的策略。
图1。夜间卧室温度的平均百分比超过26 o C,由伦敦lsoas汇总,在RCP 2.6和b)2030年代的2030年代时间范围内,在RCP 2.6下,2085年代的时间范围。 c)双变量图,显示了2030年代的室内过热风险在RCP 2.6下的空间分布,以及格拉斯哥市苏格兰数据区的当前收入剥夺。
固体激光冷却是一项突破性技术,能够以微型方式将温度无振动冷却至 100 K。它似乎是一种很有前途的技术,可以提高未来观测卫星的性能,例如在 SWIR 和 NIR 领域。本文首次研究了在观测卫星上集成激光冷却器。我们的研究侧重于卫星有效载荷和平台级别的尺寸、重量和功率 (SWaP) 标准。其目标是评估在低地球轨道 (LEO) 红外观测任务中使用光学低温冷却器而不是机械低温冷却器的兴趣。提出了一种初步的空间激光冷却器 (LC) 架构。它由两部分组成。第一部分是冷却头,基于最先进的冷却晶体 10%Yb:YLF 和像散多通腔。第二部分是低温冷却器光电子学,基于耦合到冷却头的冗余激光二极管和光纤。考虑到红外探测器的热负荷和低温恒温器内的寄生热通量,估算了小焦平面的冷却功率。然后考虑到晶体效率、热链接损耗和光电效率,估算激光冷却器所需的光功率和电功率。假设一个为期 5 年的 LEO 微卫星任务,则对电力系统(PCDU、太阳能电池阵列、电池)和热控制系统(热管、散热器)进行尺寸计算。增加了额外的质量裕度以考虑机械支撑结构。最后,分别将有效载荷和平台的质量和体积相加,以获得卫星级别的 SWaP 平衡,代表激光冷却器的整体影响。在相同的任务和平台假设下,对微型脉冲管冷却器 (MPTC) 架构重复了该研究。最后,对这两种架构进行了比较。结果表明,即使激光冷却器的功率要求很高,质量和内部体积的减小也使得小型卫星有效载荷成为可能。
为了提高散热器的性能,许多研究论文集中于散热器几何形状的设计和优化,这是改善传热的决定性因素。提高散热器(或热交换器)性能的基本方法是优化耦合的流体流动和热传递。考虑三个优化级别:尺寸优化、形状优化和拓扑优化(TO)。对于散热器尺寸优化,通道或翅片直径是需要调整或定义的变量。对于预定义的形状,尺寸优化是最简单的方法,因为它需要较少的设计变量。但是,它不允许获得具有更复杂形状的最佳几何形状。散热器形状优化涉及优化散热器通道或翅片的形状,可以是圆形、矩形、不规则形状等。该方法比尺寸优化方法更灵活,因为其解空间包含了尺寸优化的解空间,尽管程序更复杂。散热器的拓扑优化 (TO) 没有所需的预定义几何形状。可以在设计域中创建各种空隙大小和形状,以生成不同的 TO 几何形状。解空间TO包括尺寸优化和形状优化的解空间。因此它是自由度最大的优化,但同时也是复杂度最大的优化。