本研究评估了使用专为脑 SPECT 设计的第二代多针孔 (MPH) 准直器在多巴胺转运蛋白 (DAT) SPECT 中减少扫描持续时间的可能性,与平行孔和扇形束准直器相比,该准直器具有更高的计数灵敏度和空间分辨率。方法:这项回顾性研究包括 640 例连续的临床 DAT SPECT 研究,这些研究均以列表模式使用配备 MPH 准直器的三头 SPECT 系统获取,在注射 181 6 10 MBq [ 123 I]FP-CIT 后净扫描持续时间为 30 分钟。通过将事件限制在每个投影角度的列表模式数据的按比例减少的时间间隔内,获得对应于扫描持续时间为 20、15、12、8、6 和 4 分钟的原始数据。无论扫描持续时间如何,都使用相同的参数设置迭代重建 SPECT 图像。通过视觉评估、常规特异性结合率分析和在 30 分钟扫描上训练的深度卷积神经网络,对得到的 5,120 张 SPECT 图像进行评估,以确定纹状体信号是否存在神经退行性典型的减少。结果:关于视觉解释,在 12 分钟的扫描持续时间内,图像质量对于所有 640 名患者都被认为具有诊断意义。30 到 12 分钟之间视觉解释不一致的比例(1.2%)不大于同一读者在 30 分钟扫描持续时间内两次阅读之间视觉解释不一致的比例(1.5%)。在 10 分钟的扫描持续时间内,对于 5% 的重测变异性,30 分钟图像的壳核特异性结合率的一致性好于预期。在 6 分钟或更短的扫描持续时间内观察到基于卷积神经网络的自动分类的相应变化。结论:采用配备 MPH 准直器的三头 SPECT 系统,在施用约 180 MBq 的 [ 123 I]FP-CIT 并持续 12 分钟后,可实现可靠的 DAT SPECT。
本报告旨在提供基本信息并陈述在传统临床环境中实施多叶准直器 (MLC) 使用所需的基本概念。所有主要治疗加速器制造商均提供 MLC。使用 MLC 取代传统场成形技术本身并不能改善恶性肿瘤的局部控制。在传统放射肿瘤学中使用 MLC 的理由是提高治疗效率。因此,本报告旨在协助医学物理学家、剂量师和放射肿瘤学家获取、测试、调试、日常使用和质量保证 (QA) MLC,以提高治疗设施的利用效率。本报告的目的并非描述 MLC 在适形治疗或动态治疗中的高级应用研究。放射治疗效果的主要限制因素是特定放射治疗技术固有的健康组织受照射会产生不良并发症。许多器官对辐射损伤相对敏感(脊髓、唾液腺、肺和眼睛是常见的例子),在放射治疗计划期间必须给予特别考虑。一般而言,治疗计划人员试图优化给定治疗策略可实现的剂量分布,以将肿瘤杀伤剂量的辐射输送到目标体积,同时最大限度地减少健康组织吸收的辐射量。治疗机的准直器钳口产生矩形光束。1973 年)。需要对光束进行明确的场整形,以减少受辐射的健康组织量,并使用多束光束来降低目标体积外组织吸收的剂量。传统治疗策略使用有限数量的整形光束,并将光束的方向限制在共面场。传统治疗机通过内置在机器中的一组致密金属准直器(此处将使用术语“钳口”)来整形 x 射线场。这些准直器由治疗师使用治疗室中的手动控制器定位,通常在治疗期间保持静止。传统光束整形是通过使用这些准直器钳口和连接到准直器钳口之外的加速器的二次定制光束块的组合来实现的。传统的阻滞块由一组具有各种形状和尺寸的铅块组成,这些铅块在每次治疗时手工放置,或者由为特定患者应用的特定场单独制作的 cerrobend 块组成(Powers 等人。光束穿过这些铅合金屏蔽,这些屏蔽阻挡了目标体积之外的矩形辐射场部分。光束阻滞块是根据患者的治疗计划,使用射线平面胶片或 CT 扫描数据制作的。单个患者在治疗期间可能使用多达 10 个辐射场,每个辐射场都有不同的形状,需要独特的光束阻滞。