1 炮盾 • 铝制外壳,用于对炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。• 支撑检修门、系统通风、液压集水箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动撞针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾以及提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的炮尾端。• 安装后坐和反后坐缸以及阀控气体喷射系统以清除炮管中的残留气体。 6 支架 • 为上部火炮提供基座环和耳轴支撑。 • 安装传动系统和升降动力驱动器、上部蓄能器系统、滑动组件和防护罩。 • 为火炮的传动系统和升降功能提供轴。 7 支架 • 为传动系统轴承和齿轮环的固定组件提供安装在甲板上的平台。 8 支架 • 升至火炮升降轴,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以方便后膛装填。 9 滑动装置 • 主要组件
摘要 - 在过去的几十年中,机器学习(ML)在医学图像分类中取得了重大进展。成功可以归因于两个因素:(i)诊所/医院收集和处理的独特患者数据以及(ii)解决基本分类任务的相应ML模型。实际上,患者数据可能包含患者人口统计学特有的敏感信息;和ML模型通常需要更高的计算资源,而不是单个医院的负担能力。考虑实际问题,我们探索了一种协作ML方法,其中称为客户的数据提供商旨在利用服务器的计算资源共同培训一个统一的ML模型,而无需共享任何原始数据。特别是,我们使用包含多模式图像输入和多标签地面真实的现实世界数据集专注于皮肤病变分类问题。为了启用协作性但具有隐私性的皮肤病变障碍,我们基于U形拆分学习,开发了一个名为SplitFusionNet的学习框架。SplitFusionNet的关键思想是将ML模型分为深神经网络层的(客户端,服务器)分区:客户端层处理多模态输入数据和多标签,而服务器层执行计算广泛的中层计算。此外,我们应用无损压缩和减压来提高客户端和服务器之间的通信成本。在实验上,与非分类集中式培训相比,SplitFusionNet需要更少的训练管道时间,同时实现相等的预测性能。索引术语 - 分类学习,多模式分类,多标签分类,隐私的机器学习
开颅手术是暂时打开部分头骨以露出大脑以便进行手术的程序。过去 20 年的进步使开颅手术更安全、更简单和更成功。神经外科医生现在可以在曾经认为无法触及的大脑区域进行手术。开颅手术是许多不同疾病外科治疗的一部分,包括:• 大脑内部或周围膜的生长物。• 血栓压迫大脑,通常是由于急性头部受伤造成的。• 动脉薄弱部位凸起时会形成动脉瘤。在某些患者中,动脉瘤可能会扩大,从而增加了其破裂并导致脑大出血的风险。许多动脉瘤可以通过腿部手术治疗。在某些情况下,神经外科医生可能会在动脉瘤附近放置钛夹以将其与正常动脉封住。未经治疗的动脉瘤可能会破裂,导致危及生命的脑出血。 • 需要引流的感染或脓肿。 • 癫痫,当药物无法控制时,有时可以通过切除引起癫痫发作的脑部部位来治疗。 • 某些疼痛综合征,可通过减压被动脉压迫的神经来治疗 • 因炎症引起的脑肿胀 • 因创伤引起的颅骨骨折 • 异物穿透大脑。 开颅手术的宽度范围很广,从几毫米(锁孔或钻孔开颅手术)到几厘米不等,具体取决于问题和所需的治疗。 颅底手术和开颅手术:大脑底部位于颅底上。要切除某些类型的肿瘤,外科医生必须进入颅底并进行开颅手术。尽管颅底手术很复杂并且通常需要计算机,但近年来取得了很大进展,风险也更容易接受。
三叉神经痛(TN)是一种慢性疼痛,反复发作的电击样疼痛会影响第五个颅神经。微血管减压(MVD)是TN的治疗方法之一。MVD的麻醉管理需要特别考虑以减少大脑体积(松弛大脑)并优化平均动脉压(MAP)。女性29-YO,40千克的主要抱怨:自1年前以来,在正确的面部区域内th动疼痛和间歇性僵硬。脑MRI检查显示,右上小脑动脉(RSCA)分支在根部进入区域附近,并接受MVD。使用平滑的插管技术和维护使用吸入性麻醉药(Sevoflurane 1 vol%)和静脉内(丙泊酚100mcg/kg/minune,remifentanil 0.2MCG/kgbw/min,和rocuronium 10mcg/kgbw/kgbw/min)。MAP(90mmHg)和ETCO 2(30mmHg)的目标。我们没有将甘露醇用于松弛的大脑。早期出现并进行平滑的拔管,以防止突然的血液动力学变化并最大程度地减少咳嗽,然后早期神经系统检测颅内并发症。七氟硫烷的联合使用<1mac <1mac和连续的丙泊酚提供了最佳的操作区域。这种组合减少了脑血流,这使大脑松弛并保持最佳地图以保持脑灌注压力并降低脑缺血的风险。这些药物的组合也使更快的神经系统评估变得早期恢复。MVD的麻醉管理使用神经麻醉原理,平衡的麻醉和严格的血液动力学监测。吸入麻醉二氟烷和静脉丙泊酚的组合可以优化操作区域的可视化,并且可以增强患者的恢复。
抽象引入慢性胰腺炎患者(CP)腹痛的治疗方法在中枢神经系统敏化的情况下仍然具有挑战性,这是由持续性疼痛刺激引起的重塑和神经元过度刺激性的现象。这被怀疑使受影响的个体不太可能对传统疗法做出反应。内疗或手术减压为胰管阻塞的患者提供。但是,对治疗的反应是不可预测的。胰腺定量感觉测试(P-QST)是对CP中疼痛系统测试疼痛系统的一种调查技术,已用于将患者分为三个相互排他性的组:没有中心敏化,节段敏感性,节段敏感性(pancreatic panccurotome)(胰腺场外场)和广泛的超级过敏性中心化。我们将测试预处理P-QST表型的预测能力,以预测疼痛CP侵入性治疗后疼痛改善的可能性。方法和分析这项观察性临床试验将招募匹兹堡大学,约翰·霍普金斯大学和印第安纳大学的150名患者。参与者将使用P-QST进行预处理。治疗将是胰腺内疗或手术,以清除疼痛的胰管阻塞。主要结果:在干预后6个月时,以前7天的平均疼痛评分在前7天中。探索结果将包括创建一个模型,以预测对侵入性治疗的反应。次要结果将包括随访期间阿片类药物使用的变化,以及干预后3、6和12个月的患者报告的疼痛和生活质量的结果。伦理和传播该试验将评估P-QST预测痛苦CP侵入性治疗的反应的能力,并为
1 炮盾 • 铝制外壳,用于对火炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。 • 支撑检修门、系统通风、液压集管箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动击针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封火炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾和提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的后膛端。 • 安装后坐和反后坐缸,以及阀控气体喷射系统,以清除炮管中的残留气体。 6 炮架 • 为上部火炮提供底环和耳轴支撑。 • 安装传动机构和仰角动力驱动器、上部蓄能器系统、滑动组件和防护罩。• 为火炮的传动机构和仰角功能提供轴线。7 支架 • 为传动机构轴承和齿轮环的固定部件提供安装在甲板上的平台。8 托架 • 升至火炮仰角轴线,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以便于后膛装填。9 滑动装置 • 火炮发射部件的主要组件,包括托架、枪尾盖和枪尾机构;火炮身管外壳;空壳提取器和托盘。• 安装火炮仰角轴线的耳轴;安装仰角齿轮扇形装置。
采用减压化学气相沉积法在 Si 0.4 Ge 0.6 虚拟衬底(VS)上循环外延生长 Ge/SiGe 超晶格,制备了三维(3D)自有序 Ge 纳米点。Ge 纳米点采用 Stranski-Krastanov 机理形成。通过 Ge/SiGe 超晶格沉积,分别获得了沿垂直和横向的点上点排列和〈100〉排列。研究了 Ge 纳米点的刻面和生长机制以及排列的关键因素。观察到两种类型的 Ge 纳米点:由 {105} 面组成的类金刚石纳米点和由 {113} 和 {519} 或 {15 3 23} 面组成的圆顶状纳米点。Ge 纳米点倾向于直接在前一周期的纳米点上方生长,因为这些区域表现出由埋藏的纳米点引起的相对较高的拉伸应变。因此,这种点对点对准对 SiGe 间隔层厚度很敏感,并且当 SiGe 间隔层变厚时,这种对准会变差。由于超晶格和 VS 之间的应变平衡,SiGe 间隔层中 45% 至 52% 的 Ge 含量会影响 Ge 纳米点的横向对准和尺寸均匀性。通过保持应变平衡,可以改善 3D 对准 Ge 纳米点的排序。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/acce06 ]
摘要 本研究旨在评估高渗盐水与晶体液(生理盐水/乳酸林格氏液)在改善创伤性脑损伤 (TBI) 患者临床结果方面的效果。我们以不同的 MeSH 词搜索了 1990 年至今的电子数据库和灰色文献(未发表的文章)。关于 TBI(>18 岁)减压开颅术的随机对照试验、病例对照研究和前瞻性队列研究。临床结果指标包括格拉斯哥昏迷结果量表 (GCOS)、扩展 GCOS 和死亡率。数据被提取到 Review Manager 软件中。共检索并分析了 115 篇符合纳入标准的文章。最终,我们的荟萃分析纳入了五项研究,结果显示,使用高渗盐水的 TBI 患者在出院或 6 个月时获得良好结果的可能性与使用晶体液的患者相比无统计学意义(比值比 [OR]:0.01;95% 置信区间 (CI):0.03–0.05;P = 0.65)。出院或 6 个月时使用高渗盐水与使用晶体液的死亡相对风险 (RR) 为 RR:0.80;95% CI:0.64–0.99;P = 0.04。亚组分析显示,与晶体液组相比,使用高渗溶液的组干预次数显著减少 OR:0.53;95% CI:0.48–0.59; P < 0.00001,并且还缩短了重症监护病房的住院时间(OR:0.46;95% CI:0.21–1.01;P = 0.05)。高渗盐水减少了经济负担,但既不影响临床结果也不降低死亡率。然而,需要进一步的临床试验来证明高渗盐水与普通盐水/乳酸林格氏液相比,是否在改善 TBI 患者的临床和神经系统状况方面有任何作用。
太阳能和储能发电项目 1.0 简介 马尼托沃克公用事业公司 (MPU) 是一家市政公用事业公司,拥有、运营和维护供水和电力分配系统,为马尼托沃克市约 35,000 人提供服务。MPU 在密歇根湖的主要场地运营一个水过滤设施和一个带有两个固体燃料蒸汽发电机组的发电设施。MPU 行政办公室也位于该场地。该主要场地有几个小型泵站、灰仓和各种储存设施,为水过滤和发电设施提供服务。供水系统包括三个水塔、三个地下减压站、一个地下水库、两个增压泵站和两个 Ranney 收集井。电力分配系统包括 6 个变电站和一个额外的燃气轮机发电场。整个电力系统共有约 17,821 个电力客户、8,500 根电线杆、24 个 13.2kV 一次电路和 7 个 4kV 一次电路。MPU 还拥有约 33 英里的光纤电缆,该电缆连接到 MPU 电线杆上,部分埋在地下。MPU 是 Midcontinent 独立输电系统运营商 (MISO) 的完全市场参与者 (MP)。MPU 正在向开发商征求建设一个综合发电项目的提案,该项目由 30 MW 太阳能发电和 10 MW 电池存储系统组成,最低容量为四 (4) 小时。MPU 还要求对下面第 2 节中给出的变体进行定价。还将考虑有关该项目可选 O&M 协议和替代购买电力协议 (PPA) 安排的其他提案。2.0 项目响应提案将为 30 MW 太阳能设施加上 10 MW 电池存储系统提供定价,该系统与 MPU 配电系统互连,最低容量为四 (4) 小时(基础项目)。 MPU 对以下变化的定价进一步感兴趣:
太空探索的主要挑战之一是妥善保护宇航员免受太空环境的危害。因此,宇航服是为了在舱外活动期间保护机组人员而设计的,但它们目前无法妥善承受微流星体和轨道碎片 (MMOD) 等撞击造成的损坏,如果被刺破,它们会减压和坍塌,造成灾难性的后果。在这种情况下,将自修复材料整合到宇航服中的可能性引起了科学界的关注,因为它可以实现自主损伤修复,从而提高安全性和使用寿命。然而,太空环境对这些材料的影响仍有待确定,并可能导致其整体性能显著下降。本文介绍的研究重点是应用于宇航服的第一个例子,分析了一组候选自修复聚合物在暴露于模拟太空辐射之前和之后的修复性能。在未辐照的情况下,还对双层膜和以这些聚合物为基质的纳米复合材料进行了比较。本研究还旨在通过将自修复材料的标准表征(例如:划痕、冲击和穿刺测试)与空间辐射对其影响的评估相结合,填补这两个方面的空白。了解辐射是否以及如何影响损伤恢复性能,实际上是确定给定的自修复材料是否真的可以用于太空应用的基础。通过穿刺损伤后的现场流速测量来评估自修复响应。收集最大和最小流速、它们之间的时间以及穿刺后 3 分钟内损失的空气量作为修复性能参数。对于纯材料,然后在伽马射线辐照样品上重复相同的测试,以研究暴露于模拟空间辐射后自修复性能的变化。结果表明,粘性响应较低的系统的修复性能较高,辐照后修复性能会降低。因此,需要进一步分析空间环境对所呈现材料的影响。 NASA HZETRN2015(高 Z 和能量传输,2015 版)软件也用于模拟舱外活动期间银河宇宙射线对航天服的作用。将经典的航天服多层与将标准内胆替换为每种分析材料层的配置进行比较,以确定最有希望的候选者,并确定添加纳米填料是否会显着提高屏蔽能力。