诱导 GFP 表达。C、D. 成年年轻果蝇睾丸中的 DNA(Hoechst)和 4Mbox-GFP(Mitf 活性报告基因)的代表性图像。D 中勾勒出了 C 中精原细胞和精母细胞的放大区域。C 中勾勒出了囊细胞核。DE 中的虚线标出了有丝分裂到减数分裂的转变。对成年年轻雄性有丝分裂精原细胞(n = 10 个睾丸中的 50 个精原细胞)和减数分裂精母细胞(n = 10 个睾丸中的 50 个精母细胞)中 4MBox-GFP 强度的量化。平均值 ± SD p < 0.0001,Mann-Whitney U 检验。 F. 量化年轻男性(n =60 个精母细胞,来自 12 个睾丸)和老年男性(n =80 个精母细胞,来自 16 个睾丸)精母细胞中 4Mbox-GFP 强度。平均值 ± SD p < 0.0001,Welch t 检验。G. 年轻和老年男性精母细胞中 DNA(Hoechst)和 4Mbox-GFP(Mitf 活性报告基因)的代表性图像。H. 量化年轻男性(n =60 个精母细胞,来自 12 个睾丸)和老年男性(n =65 个精母细胞,来自 13 个睾丸)精母细胞中 VhaSFD-GFP 强度。平均值 ± SD p < 0.0001,Welch t 检验。I. 年轻和老年男性精母细胞中 DNA(Hoechst)和 VhaSFD-GFP 的代表性图像。条,20 µm。
带有评论[PZ1]:也许从转录调节到重组的过渡更加顺利,您可以写出,这种“本地招聘”不仅导致了基因的转录,而且还会影响减数分裂的交叉形成
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年11月27日发布。 https://doi.org/10.1101/2023.11.27.568863 doi:Biorxiv Preprint
育种过程中利用的自然遗传变异主要由减数分裂期间同源染色体之间的相互 DNA 交换(交叉,CO)来保证。CO 的形成发生在减数分裂染色体轴的背景下,减数分裂染色体轴是一种蛋白质结构,姐妹染色单体在减数分裂前期 I 期间沿着该结构排列成环状碱基阵列。在包括大麦 (Hordeum vulgare) 在内的植物中,严格的 CO 调控导致有限数量的 CO 偏向染色体末端,而大部分基因组(特别是间质染色体区域)在育种过程中保持未开发状态。因此,需要新的策略和工具来修改减数分裂重组结果。为了能够对(新的)减数分裂蛋白进行蛋白质组学鉴定,我们在拟南芥减数分裂细胞中使用基于 TurboID (TbID) 的邻近标记对两种减数分裂染色体轴相关蛋白 ASYNAPTIC1 (ASY1) 和 ASYNAPTIC3 (ASY3) 进行标记。在已鉴定的 39 种候选蛋白中,鉴定出大多数已知的轴相关蛋白和新蛋白。在突变体筛选后,我们鉴定出(至少)四种具有减数分裂突变表型的新候选蛋白。其中,一种候选蛋白被发现是联会复合体 (SC) 的一部分。如果没有它,SC 形成就会中断,交叉形成就会减少,而 CO 水平就会增加,CO 干扰几乎被消除。为了快速评估和研究大麦的减数分裂基因,我们在 Cas9 表达植物中建立了大麦条纹花叶病毒诱导的基因编辑 (BSMVIGE) 和基于多重晶体数字 PCR (dPCR) 的单花粉核基因分型。 BSMVIGE 能够分离出减数分裂基因缺陷的大麦植物,而无需稳定的遗传转化,而单花粉核基因分型能够在不增加分离后代群体的情况下高通量评估重组率。我们的装置应用于大麦中的各种减数分裂基因,表明大麦重组格局可以改变。总之,基于 TbID 的邻近标记能够识别减数分裂细胞等稀有细胞类型中的蛋白质邻近蛋白,而 BSMVIGE 与单花粉核基因分型相结合,能够快速解析大麦以及其他作物中的减数分裂基因功能。
从有丝分裂中退出是由磷光蛋白质组景观的急剧变化引起的。 依赖细胞周期蛋白依赖性激酶(CDK)活性,主要调节激酶以及诸如发芽酵母中Cdc14之类的诸如Cdc14之类的反破坏性磷酸化酶的激活,从而使有序的底物去磷酸化有序,从而允许进入新的细胞周期进入新的细胞周期和复制许可。 在减数分裂中,必须在没有中间DNA复制的情况下执行两个细胞分裂,这意味着必须将全球磷酸化和去型的替代化适应减数分裂的挑战。 使用萌芽酵母中的全球时间分辨磷酸蛋白质组学方法,我们比较了有丝分裂出口与从减数分裂I到减数分裂II之间的磷蛋白组景观。 我们发现,与有丝分裂的退出不同,在减数分裂I结束时,CDK磷酸基因磷酸化的磷酸化大部分稳定,而大多数与CDK无关的基序是通过去磷酸化来重置的。 然而,在减数分裂的中期,CDK的人工降低导致有序的底物去磷酸化,与有丝分裂相当,表明在减数分裂I的末端磷酸化I的磷酸化I的主要是有定性的,而不是定性下降的。从有丝分裂中退出是由磷光蛋白质组景观的急剧变化引起的。依赖细胞周期蛋白依赖性激酶(CDK)活性,主要调节激酶以及诸如发芽酵母中Cdc14之类的诸如Cdc14之类的反破坏性磷酸化酶的激活,从而使有序的底物去磷酸化有序,从而允许进入新的细胞周期进入新的细胞周期和复制许可。在减数分裂中,必须在没有中间DNA复制的情况下执行两个细胞分裂,这意味着必须将全球磷酸化和去型的替代化适应减数分裂的挑战。使用萌芽酵母中的全球时间分辨磷酸蛋白质组学方法,我们比较了有丝分裂出口与从减数分裂I到减数分裂II之间的磷蛋白组景观。我们发现,与有丝分裂的退出不同,在减数分裂I结束时,CDK磷酸基因磷酸化的磷酸化大部分稳定,而大多数与CDK无关的基序是通过去磷酸化来重置的。然而,在减数分裂的中期,CDK的人工降低导致有序的底物去磷酸化,与有丝分裂相当,表明在减数分裂I的末端磷酸化I的磷酸化I的主要是有定性的,而不是定性下降的。
在减数分裂期间,链交换蛋白RAD51和DMC1的核蛋白蛋白质对通过同源重组(HR)修复SPO11生成的DNA双链断裂(DSB)至关重要。正和负RAD51/DMC1调节剂的平衡活性可确保正确重组。类似烦躁的类似1(fignl1)先前显示出对人类细胞中RAD51的负调节。然而,fignl1在MAM-MALS中减数分裂重组中的作用仍然未知。在这里,我们使用男性种系条件敲除(CKO)小鼠模型解读了Fignl1和Fignl1相互作用调节剂(FIRRM)的减数分裂功能。在小鼠精子细胞中完成减数分裂预言所必需。尽管在减数分裂DSB热点对DMC1上有效募集,但晚期重组中间体的形成在FIRRM CKO和Fignl1 CKO精子细胞中仍然有缺陷。此外,Fignl1-FiRRM复合物将RAD51和DMC1的积累限制在完整的染色质上,这是由于SPO11催化的DSB的形成而独立于形成。纯化的人fignl1δn改变了rad51/dmc1核蛋白素的结构,并在体外inshi-bits链链入侵。因此,这种复合物可能在减数分裂DSB的位点调节RAD51和DMC1关联,以促进重组中间体的促进链和处理。
阴道微生物组组成与宿主健康密切相关。由特定厌氧菌(例如,阴道gardnerella)主导的微生物组称为细菌性阴道病(BV),与负面的健康结果有关,而乳酸杆菌属物种的定殖被认为可以预防BV。然而,乳酸杆菌内体在阴道健康中的作用是有争议的,有证据表明某些菌株可能无法预防BV,而其他菌株则可能无法防止BV。为了更好地表征L. iners菌株,需要在体外研究它们与阴道细菌和人类细胞的相互作用,但由于缺乏液体培养基的快速生长而阻碍了这种情况。我们开发了三种液体培养基的生长:Serrador适应ISCOVE的ISCOVE的培养基(Slim),这导致了强大的L. Iners生长,Slim-V(Slim-V)的阴道适应性版本(Slim-V)和一种化学定义的培养基(Slim-CD)(Slim-CD)。纤细和纤细的V型生长可显着改善。纤细-CD导致生长速度较慢,但可能被证明可用于表征L. iners的营养需求或代谢物生产。修改后的Slim-V版本支持人宫颈上皮细胞的生长,并为将来的共培养工作提供了基础。在这里,我们介绍了纤细,纤细V和Slim-CD的制剂,并比较了培养基中细菌菌株和人类细胞的生长。
胚胎发育受到钙(Ca 2+)信号的刺激,这些信号是通过受精的精子在卵细胞质中产生的。通过卵子形成卵。他们经过一个称为减数分裂的细胞分裂,在此过程中,它们的二倍体染色体数量减半,并通过越过新的遗传组合创建新的遗传组合。在形成过程中,卵还获得了产生Ca 2+信号所必需的细胞成分,并支持新形成的胚胎的发展。离子化钙是细胞在许多生物过程中使用的通用二信使,卵会形成“工具包”,这是信号传导所需的一组分子。 减数分裂停止了两次,这些逮捕由调节蛋白的复杂相互作用控制。 第一次减数分裂持续时间持续到青春期后,当时黄体激素激素刺激了减数分裂的恢复。 细胞周期在排卵前的第二个减数分裂分裂的中间再次停止。 男配子的结合发生在输卵管中。 配子融合后,精子从卵子的细胞内存储中释放了Ca 2+,在哺乳动物中,在哺乳动物的细胞内释放,然后是重复的Ca 2+尖峰,称为Ca 2+的振荡,在持续使用几个小时的细胞质中。 下游传感器蛋白有助于解码信号并刺激其他分子,这些分子的作用是正确发育所必需的,包括那些有助于防止其他精子细胞融合到卵中的分子,以及那些有助于从第二次减数分裂骤停,结束减数分裂并进入第一个有丝分裂细胞分裂的卵子的分子。离子化钙是细胞在许多生物过程中使用的通用二信使,卵会形成“工具包”,这是信号传导所需的一组分子。减数分裂停止了两次,这些逮捕由调节蛋白的复杂相互作用控制。第一次减数分裂持续时间持续到青春期后,当时黄体激素激素刺激了减数分裂的恢复。细胞周期在排卵前的第二个减数分裂分裂的中间再次停止。男配子的结合发生在输卵管中。配子融合后,精子从卵子的细胞内存储中释放了Ca 2+,在哺乳动物中,在哺乳动物的细胞内释放,然后是重复的Ca 2+尖峰,称为Ca 2+的振荡,在持续使用几个小时的细胞质中。下游传感器蛋白有助于解码信号并刺激其他分子,这些分子的作用是正确发育所必需的,包括那些有助于防止其他精子细胞融合到卵中的分子,以及那些有助于从第二次减数分裂骤停,结束减数分裂并进入第一个有丝分裂细胞分裂的卵子的分子。在这里我回顾了鸡蛋形成的主要步骤,讨论生成Ca 2+
肿瘤抑制剂BRCA1-BARD1复合物调节许多细胞过程。对其肿瘤抑制功能的批评是其在基因组完整性中的作用。尽管环E3泛素连接酶活性是复合物的唯一已知酶促活性,但对BRCA1-BARD1 E3泛素连接酶活性的体内需求一直存在争议。在这里,我们使用C探索Brca1-bard1 E3泛素连接酶活性的作用。elesgans。遗传,细胞生物学和生化分析E3连接酶活性有缺陷的突变体表明,在DNA损伤修复和减数分裂的背景下,Complex的E3连接酶依赖性和独立功能既存在。我们表明,E3连接酶活性对于复合物的核积累至关重要,特别是集中在减数分裂重组位点,而在增殖生殖细胞中的DNA损伤位点不重要。虽然仅BRCA1才能进行单位素化,但BRCA1需要Bard1来促进聚氨基化。我们发现,通过推动BRCA1的核积累和自我关联,可以部分缓解E3连接酶活性和BARD1在DNA损伤信号传导和修复中的需求。我们的数据表明,除了E3连接酶活性外,BRCA1还可以在DNA损伤信号传导和修复中起结构作用,而BARD1在增强BRCA1功能方面发挥了可观的作用。
在哪里可以找到更多信息? Akera, T.、Trimm, E. 和 Lampson, MA (2019)。自私着丝粒减数分裂作弊的分子策略。Cell 178,1132–1144.e10。Burt, A. 和 Crisanti, A. (2018) 基因驱动:进化与合成。ACS Chem. Biol. 13,343–346。Cazemajor, M.、Joly, D. 和 Montchamp-Moreau, C. (2000)。拟果蝇的性别比例减数分裂驱动与 Y 染色体的方程不分离有关。Genetics 154,229–236。Crow, JF (1991)。孟德尔分离为何如此精确?BioEssays 13,305–312。 Dawe, RK, Lowry, EG, Gent, JI, Stitzer, MC, Swentowsky, KW, Higgins, DM, Ross-Ibarra, J., Wallace, JG, Kanizay, LB, Alabady, M., et al . (2018). 驱动蛋白-14 马达激活新着丝粒以促进玉米减数分裂驱动。Cell 173 , 839–850。Dyer, KA, Charlesworth, B., 和 Jaenike, J. (2007). 减数分裂驱动导致的染色体范围连锁不平衡。Proc. Natl. Acad. Sci. USA 104 , 1587–1592。Herrmann, BG, Koschorz, B., Wertz, K., McLaughlin, KJ, 和 Kispert, A. (1999)。 t 复合体反应基因编码的蛋白激酶导致非孟德尔遗传。自然 402,141–146。Larracuente, AM 和 Presgraves, DC (2012)。果蝇的自私分离扭曲基因复合体。遗传学 192,33–53。Lindholm, AK、Dyer, KA、Firman, RC、Fishman, L.、Forstmeier, W.、Holman, L.、Johannesson, H.、Knief, U.、Kokko, H.、Larracuente, AM 等人 (2016)。减数分裂驱动的生态学和进化动力学。生态学发展趋势 31,315–326。Sandler, L. 和 Novitski, E. (1957)。减数分裂驱动作为一种进化力量。美国自然。 91 , 105–110。Zanders, SE 和 Unckless, RL (2019)。减数分裂驱动因素的生育成本。Curr. Biol. 29 , R512– R520。