揭示了G和C-S-H之间仅有范德华力,界面键合强度很弱,并且脱键性能很低。石墨烯的脱根能量随着界面水含量的增加而降低,表明水侵入会削弱G和C-S-H的结合效应,并减少石墨烯对C-S-H底物的难度。在纳米级湿度的影响下探索石墨烯对CSH的粘附行为对于理解基本的粘附机制,优化复合材料证明和促进相关学科的发展至关重要。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
2凸式23 2.1基础:压缩感应。。。。。。。。。。。。。。。。。。25 2.1.1凸介:原理。。。。。。。。。。。。。。。。25 2.1.2直觉。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.1.3在有限的等轴测图下保证紧密度。。。。。29 2.2低级矩阵恢复。。。。。。。。。。。。。。。。。。。。30 2.2.1凸质:原理。。。。。。。。。。。。。。。。。。。。31 2.2.2在受限的等轴测图下保证紧密度。33 2.2.3没有限制等轴测的问题。。。。。。。。。。35 2.3超分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.1通过总变化规范进行凸介。 。 。 40 2.3.2无限制的等轴测特性。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.3通过双证书正确性。 。 。 。 。 。 。 。 。 。 。 。 。 4440 2.3.1通过总变化规范进行凸介。。。40 2.3.2无限制的等轴测特性。。。。。。。。。。。。。43 2.3.3通过双证书正确性。。。。。。。。。。。。。44
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
n- [2-(二乙基氨基)乙基] -2-甲氧基-5-(甲基磺酰基)苯甲酰胺一氢氯化物(IUPAC)
贡献。在本文中,我们系统地研究了近似凸函数优化的量子算法,并将其应用于零阶随机凸老虎机。量子计算是一项快速发展的技术,量子计算机的能力正在急剧提升,最近谷歌 [ 6 ] 和中国科学技术大学 [ 42 ] 已经达到了“量子至上”。在优化理论中,半定规划 [ 3 , 4 , 11 , 12 ]、一般凸优化 [ 5 , 15 ]、优化中的脱离鞍点问题 [ 41 ] 等问题的量子优势已被证明。然而,据我们所知,近似凸优化和随机凸优化的量子算法是广泛开放的。在本文中,我们使用量子零阶评估预言机 OF 来考虑这些问题,这是先前量子计算文献中使用的标准模型 [ 5 , 14 , 15 , 41 ]:
在随机环境中涉及顺序决策的优化问题。在这本专着中,我们主要集中于SP和SOC建模方法。在这些框架中,存在自然情况,当被考虑的问题是凸。顺序优化的经典方法基于动态编程。它具有所谓的“维度诅咒”的问题,因为它的计算复杂性相对于状态变量的维度呈指数增长。解决凸多阶段随机问题的最新进展是基于切割动态编程方程的成本为go(值)函数的平面近似。在动态设置中切割平面类型算法是该专着的主要主题之一。我们还讨论了应用于多阶段随机优化问题的随机临界类型方法。从计算复杂性的角度来看,这两种方法似乎相互融合。切割平面类型方法可以处理大量阶段的多阶段问题
量子计算的一个基本模型是可编程量子门阵列。这是一种量子处理器,由程序状态提供信息,该程序状态会在输入状态上引发相应的量子操作。虽然可编程,但已知该模型的任何有限维设计都是非通用的,这意味着处理器无法完美模拟输入上的任意量子通道。表征模拟的接近程度并找到最佳程序状态在过去 20 年里一直是悬而未决的问题。在这里,我们通过展示寻找最佳程序状态是一个凸优化问题来回答这些问题,该问题可以通过机器学习中常用的半有限规划和基于梯度的方法来解决。我们将这个一般结果应用于不同类型的处理器,从基于量子隐形传态的浅层设计到依赖于基于端口的隐形传态和参数量子电路的更深层方案。
因此,鉴于这一需求,本论文研究的重点是创建一种方法,用于预测受到平面内和平面外载荷的凸耳接头的疲劳寿命。这项研究是与 GKN Fokker Aerostructures 合作进行的。当前的疲劳预测方法都是基于轴向载荷的凸耳。从概念上讲,这种方法应用了 Larsson 关系,该关系通过某些校正系数将任意凸耳的标称应力与参考凸耳联系起来。然后将凸耳的标称应力应用于 S-N 曲线,从而得出失效前的循环数(疲劳寿命)。Fokker 在其技术手册 3(TH3)中描述了这种方法。然而,Larsson 和 TH3 都没有考虑斜向和/或平面外载荷的凸耳来预测疲劳寿命。已经对斜向载荷的凸耳进行了一些研究,但这些研究的主要重点是峰值应力位置和应力集中因子 (SCF) 的计算。在公开报告的研究中没有发现关于平面外负载凸耳的信息。