收到:2023年12月2日接受:2022年12月26日发布:2023年1月4日摘要:为了适应增加能源需求的复杂性质,传统电网(CG)已通过高级通信技术(例如使用传感器,需求响应,能源存储系统和电动车辆集成)等先进的通信技术增强。为了确保局部能量平衡和可靠性,已经提出了微电网(MG)。微电网是具有弹性运行的低或中电压分配系统,并使用智能能源管理技术调节主电网,本地分布式发电机(DGS)和消费者之间的功率交换。本文简要概述了MG,其运营以及对各种能源管理方法的审查。在MG控制策略中,能源管理系统(EMS)是负责平衡可用能源(CG,DG,ESS和EVS)和负载的关键组成部分,同时为公用事业的利润做出了贡献。本文根据其结构和使用的控制对EMS的方法进行了分类。此外,还确定了具有进一步研究潜力的未开发区域。关键字:微电网,能源管理系统,可再生能源。引用本文为:M。M. Khaleel,A。A. Ahmed,A。Alsharif,“微电网中的能源管理系统策略:评论”,《北非科学出版杂志》(NAJSP),第1卷。1,否。1,pp。1-8,1月至3月2023年。
有机合成。2,3,7 – 11 在 MPcs 和 MPs 的电催化中,已知它们的中心金属离子决定反应机理,而配体则被认为主要通过某些电子因素来控制电化学动力学。7,12 – 14 关于它们的能量存储能力,大多数研究都集中在通过与各种碳衍生基质形成复合材料来改善它们的电荷存储。4,15 – 19 这些研究中只有一小部分还建议通过对 N 4 大环配体进行功能化来增强它们的表面限制电荷存储。 4,16 关于它们的电催化和储能能力的见解和研究确实在提高特定目标的整体效率方面取得了很大进展,但由于很少关注它们的电双层 (EDL) 结构,因此控制带电界面化学的因素仍然很大程度上未知。 20 – 23 即使 EDL 结构的微小改变也会影响电化学电容器中存储的能量,并导致电化学动力学急剧增加。 20,23 – 25
电极表面附近的离子种类。由于电能以离子电荷的形式积累,因此可以通过优化多孔电极的比表面积和匹配离子种类和电极孔的几何特征来放大 EDL 电容,从而放大能量和功率密度。3 相反,电化学伪电容来自电解质和电极之间的电荷转移或来自微孔中离子种类的插入。4 在这种情况下,电能通过法拉第反应和/或电吸附存储。虽然用于描述 EDL 电容的基于物理的模型已经取得了很大进展,但由于 EDL 中电子和离子电荷的强耦合,定量描述电化学伪电容仍然是一个理论挑战。5
在恒电位模式下,微米厚度的涂层在储存过程中会被破坏。这种类型的晶体水合物电解质不能被认为是通常意义上的水性电解质。其中电解合金的形成机理研究较少,应该与金属从水性复合溶液中电还原并同时析氢有着根本的不同。为了获得厚度为 1-10 毫米的涂层,水性电解质是最有希望的。使用各种复合成分的溶液 7-9 可以形成铼含量范围很广的合金,这意味着可以通过电镀获得各种各样的表面功能特性。如参考文献 2 和 10 所示,通过从 pH 为 3.5 的柠檬酸盐 (Cit) 电解质中电沉积可以获得铼含量为 45-65 at% 的高质量涂层。众所周知,电镀层的组成和性能取决于电化学活性复合物的组成,即直接在电极表面反应的离子的组成,这些离子在阴极的放电导致金属或合金的形成。电化学活性复合物的数量、浓度和组成又取决于溶液的pH值。在柠檬酸盐溶液中,考虑到在柠檬酸分子中取代四个质子的理论可能性,在低pH值下,可能同时存在几种质子化的柠檬酸钴11以及铼的柠檬酸复合物12。在pH值为3.5时,柠檬酸钴中的最高浓度为
它们通过可逆的 ATP 竞争机制在细胞内与受体结合发挥作用。5 – 7 对伊马替尼的耐药性促使人们开发新的 TKI,例如尼洛替尼,它的药效大约是伊马替尼的 30 倍,并且具有三氟甲基,可增加与活性位点的范德华 (wdW) 相互作用。8 尼洛替尼可以规避 33 种临床相关的伊马替尼耐药突变中的 32 种。考虑到伊马替尼和尼洛替尼与顺铂联合使用时表现出协同抗肿瘤作用,本研究的关键概念是将 TKI 的抑制作用与顺铂的抗癌特性结合起来,通过设计和合成在一个独特分子中包含 Pt(II) 支架(即顺铂)和 TKI(即尼洛替尼和伊马替尼)的 Pt(IV) 物种。
钙的还原电位低于锂 (Li/Li+; 3.04 V vs. SHE),但仍远低于铝 (Al/Al3+; 1.68 V vs. SHE) 和镁 (Mg/Mg2+; 2.36 V vs. SHE) 等多价离子。8,9 这意味着钙可以在与锂相似的电压下工作。钙的理论体积容量为 2073 mA h cm3,与锂相似,但低于镁 (3832 mA h cm3) 和铝 (8046 mA h cm3),尽管它们的还原电位更负导致它们的电池电压较低。 10–12 钙的有效离子半径比镁大(Ca 2+;0.99 Å,Mg 2+;0.66 Å),同时携带同等电荷,这可能导致电极中的电荷密度降低,但与其他金属离子替代品相比,它的功率密度相对较高。13 此外,钙的电荷密度和与溶剂的配位性比镁弱,这进一步增强了其动力学能力。14 在审查可行的金属离子选项时,必须考虑地球丰度,因为它为某些电池研究途径的寿命和可用性提供了视角。在可行的电荷载体中,铝在地壳中的丰度最高(8.13 wt%),其次是钙(3.63 wt%)、钠(2.83 wt%)、钾(2.59 wt%)、镁(2.09 wt%)和锂(0.0065 wt%)。15 与其他金属离子相比,钙的丰度相对较高,使其成为一个强大而可行的选择。钙离子电池 (CIB) 近期未能像钾离子和钠离子那样取得成功的一些原因是由于目前使用的电解质性能较差、Ca 2+ 在阴极材料中的插入性较差、工作电压低(<2.0 V)以及钙金属的阳极
将研究重点放在高能量密度二次电池的探索上。锂金属阳极 (LMA) 被认为是下一代锂离子电池 (LIB) 有前途的替代阳极。2锂金属被称为“圣杯”阳极,具有 3,860 mA hg 1 的极高容量、低密度 (0.59 g cm 3) 和低电化学电位,导致令人印象深刻的重量和体积能量密度。第一代锂金属电池 (LMB) 可以追溯到 20 世纪 70 年代,当时 Whittingham 提出使用锂作为阳极,使用 TiS 2 作为阴极。3虽然 Li8TiS 2 电池表现出优异的能量密度和倍率性能,但不受控制的锂沉积会引发热失控和安全隐患。因此,对锂金属基二次电池的研究陷入停滞。随着表征技术的发展和对高能量密度器件的需求不断增长,人们提出了对锂金属负极失效机理和相关改进的全面理解。例如,Zhang 等人报道,枝晶会通过降低自热温度 (T 1) 来加速 Li 8 LiNi 0.5 Co 0.2 Mn 0.3 O 2 软包电池中的热失控。4
非线性光学在激光技术中有着广泛的应用,包括光参量放大、电光开关、倍频和混频。从技术角度来看,研究非线性光学 (NLO) 特性对于设计 NLO 设备和理解控制光与物质相互作用的潜在机制至关重要。超短激光脉冲可以通过利用 NLO 特性、可饱和吸收 (SA) 来产生,因此可饱和吸收体是脉冲激光器中的关键光学元件。半导体可饱和吸收镜 (SESAM) 因其高稳定性而在商业上用作可饱和吸收体,但它具有制造工艺复杂和带宽有限的缺点。1 为了开发超快激光器,需要不同的 NLO 材料
具有适当带隙的半导体粒子由于其价带已填满而导带为空,因此光催化效率最高。11二氧化钛 (TiO 2 ) 是光降解水中有机污染物最有效的半导体光催化剂,由于其无毒、化学惰性、光稳定性高以及生产成本低,在废水净化中显示出良好的应用前景。12–14 然而,TiO 2 的带隙能量大 (锐钛矿为 3.2 eV,金红石为 3.0 eV) ,不能吸收可见光,导致光生电子-空穴对快速复合,从而导致光催化效率低下。7因此,研究人员目前正致力于开发有效的方法来克服与电子-空穴对复合相关的问题,特别是在不使用强还原剂的情况下。 15 其中一条途径是合成具有不同特性的新型半导体异质结构体系,与单个元件相比,它们可以促进电荷分离、抑制电荷复合、拓宽光吸收的光谱范围。16,17
传统计算机技术正面临着根本性的限制,这些限制与硬件架构(冯·诺依曼瓶颈)、晶体管的集成密度(摩尔定律的终结)以及估计功耗的大幅增加有关。这些限制极大地刺激了对新颖和非传统计算概念的研究。1 神经形态工程领域旨在通过设计新型计算硬件来解决这些挑战,这些计算硬件从生物学原理中汲取灵感,例如信号阈值、突触可塑性、并行性和层次结构或内存计算。2 在过去十年中,忆阻器件作为神经形态硬件设计中的基本构建单元发挥了关键作用,重大努力集中在大规模集成