抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
附近草图通常以 1 英寸 = 1,000 英尺的比例绘制,但如果没有这种地图,也可以接受 1:24,000 比例的美国地质调查局地图。附近草图应描绘所有相邻分区的地块线和名称、拟议分区地块约半英里范围内街道、公路、天然溪流和湿地的位置;约半英里范围内所有相邻公用设施系统的位置,流经拟议分区的溪流的自然排水路线,并在合理的情况下标明支流区域的边界。根据本小节提交的所有地图都应明确标明包含地图主题土地的区域、乡镇和范围。
正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
计算机视觉的抽象工业应用有时需要检测数字图像中小组像素的非典型物体。这些对象很难单一单,因为它们很小并且随机分布。在这项工作中,我们使用新型基于ANT系统的聚类算法(ASCA)提出了一种图像分割方法。ASCA对蚂蚁的觅食行为进行建模,蚂蚁的觅食行为在搜索高数据密度区域的数据空间中移动,并在其路径上留下信息素跟踪。信息素图用于识别簇的确切数量,并使用信息素gra-denient将像素分配给这些簇。我们将ASCA应用于数字乳房X线照片中的微钙化,并将其与最先进的聚类算法进行比较,例如1D自组织图,k -meanss,模糊C-Meanss和可能的模糊模糊C-Meanss。ASCA的主要优点是,群集的数量不需要先验。实验结果表明,在检测非典型数据的小簇时,ASCA比其他算法更有效。
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
摘要背景:磁共振(MR)图像是脑肿瘤检测最重要的诊断工具之一。在医学图像处理问题中,脑 MR 图像中胶质瘤肿瘤区域的分割具有挑战性。精确可靠的分割算法对诊断和治疗计划有很大帮助。方法:本文介绍了一种新颖的脑肿瘤分割方法作为后分割模块,该方法使用主要分割方法的输出作为输入,并使分割性能值更好。该方法是模糊逻辑和细胞自动机(CA)的组合。结果:BraTS 在线数据集已用于实现所提出的方法。在第一步中,将每个像素的强度输入模糊系统以标记每个像素,在第二步中,将每个像素的标签输入模糊 CA 以使分割性能更好。在性能饱和时重复此步骤。第一步的准确率为 85.8%,但使用模糊 CA 后的分割准确率达到 99.8%。结论:实际结果表明,与其他方法相比,我们提出的方法可以显著改善 MRI 图像中的脑肿瘤分割。
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
