摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
对于医学图像分割,想象一下如果一个模型仅使用源域中的 MRI 图像进行训练,那么它在目标域中直接分割 CT 图像的性能如何?这种设置,即具有临床潜力的通用跨模态分割,比其他相关设置(例如域自适应)更具挑战性。为了实现这一目标,我们在本文中提出了一种新颖的双重规范化模型,该模型在通用分割过程中利用增强的源相似和源不相似图像。具体而言,给定一个源域,旨在模拟看不见的目标域中可能的外观变化,我们首先利用非线性变换来增强源相似和源不相似图像。然后,为了充分利用这两种类型的增强,我们提出的基于双重规范化的模型采用共享主干但独立的批量规范化层进行单独规范化。随后,我们提出了一种基于风格的选择方案,在测试阶段自动选择合适的路径。在三个公开数据集(即 BraTS、跨模态心脏和腹部多器官数据集)上进行的大量实验表明,我们的方法优于其他最先进的领域泛化方法。代码可在 https://github.com/zzzqzhou/Dual-Normalization 获得。
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
结合了标准和深度可分离的扩张卷积,降低了复杂性,同时保持了高度的准确性。它有四种配置,从强大的194万参数Twinlitenet +大到超轻量级34K参数Twinlitenet + Nano。值得注意的是,TwinliteNet +大的达到了92.9%的MIOU(平均交叉路口),用于驱动面积分割,而车道分割的34.2%IOU(与联合的交集)为34.2%。 这些结果实现了能力的性能,超过了当前的最新模型,而仅需少11倍的浮点操作(FLOP)才能计算。 在各种嵌入式设备上进行了严格评估,TwinliteNet +表现出了有希望的LASCENCE和功率效率,从而强调了其对现实世界自动驾驶汽车应用的潜力。 该代码可在https://github.com/chequanghuy/twinlitenetplus上找到。达到了92.9%的MIOU(平均交叉路口),用于驱动面积分割,而车道分割的34.2%IOU(与联合的交集)为34.2%。这些结果实现了能力的性能,超过了当前的最新模型,而仅需少11倍的浮点操作(FLOP)才能计算。在各种嵌入式设备上进行了严格评估,TwinliteNet +表现出了有希望的LASCENCE和功率效率,从而强调了其对现实世界自动驾驶汽车应用的潜力。该代码可在https://github.com/chequanghuy/twinlitenetplus上找到。
水下图像细分对于诸如水下探索,海洋环境监测和资源开发等任务至关重要。尽管如此,鉴于水下环境的复杂性和可变性,改善模型准确性仍然是水下图像分割任务中的关键挑战。为了解决这些问题,本研究提出了基于标准Segformer模型的水下图像的高性能语义分割方法。首先,Segformer中的混合变压器主链被Swin Transformer替换,以增强特征提取并促进对全局上下文信息的有效获取。接下来,在骨干的下采样阶段和解码器中引入了有效的多尺度注意(EMA)机制,以更好地捕获多尺度特征,从而进一步提高了细分精度。此外,将特征金字塔网络(FPN)结构合并到解码器中,以在多个分辨率下组合特征图,从而使模型可以有效地集成上下文信息,从而在复杂的水下环境中增强了鲁棒性。对SUIM水下图像数据集进行测试表明,拟议的模型在多个指标上达到了高性能:联合(MIOU)的平均相交(MIOU)为77.00%,平均召回(MRECALL)为85.04%,平均精度(Mprecision)为89.03%,为89.03%,F1Score(MF1Score(Mf1score)为86.63%)。与标准Segformer相比,MIOU的提高3.73%,MRECALL为1.98%,Mprecision的3.38%和MF1Score的2.44%的提高,参数增加了989万。结果表明,所提出的方法通过最小的其他计算实现了出色的分割精度,从而显示了水下图像分割中的高性能。
摘要:通用的很少的语义分割(GFSS)目标在学习一组基本类别的分割后,使用一些带注释的示例将新颖对象类别进行分割。典型的GFSS培训涉及两个阶段 - 基类学习,然后是新颖的课程和学习。尽管现有方法表现出了希望,但在新颖的班级数量显着时,它们通常会挣扎。大多数当前方法都冻结了编码器主链以保持基类精度;但是,冻结编码器骨架可以严重阻碍新班级中新型信息的同化。为了应对这一挑战,我们建议在GFSS中使用增量学习策略来学习编码器骨干和新型类原型。受到低级适应技术(LORA)最近成功的启发,我们通过新颖的重量分解方法向GFSS编码器主链引入了Increthorth学习。我们新提出的等级自适应权重合并策略对在编码器主链各个层中吸收的新颖性不同。在我们的工作中,我们还将增量学习策略介绍给新型类别的类原型学习。我们在Pascal-5 I和Coco-20 I数据库上进行了广泛的实验,展示了增量学习的有效性,尤其是当新颖的类人数超过基础类别时。使用我们提出的基于权重分解的增量学习(WFIL)方法,以概括性的语义分段建立了一组新的最先进的精度值。
摘要:数据增强对于像素的注释任务(如语义分割)至关重要,在语义分段中,标签会重大努力和大量劳动。传统方法,涉及简单的转换,例如旋转和翻转,创建新图像,但通常沿关键语义维度缺乏多样性,并且无法改变高级语义属性。为了解决这个问题,生成模型已成为通过生成合成图像来增强数据的有效解决方案。可控的生成模型通过使用提示和来自原始图像的视觉引用为语义分割任务提供数据增强方法。但是,这些模型在生成合成图像时面临挑战,这些图像由于难以创建有效的提示和视觉参考而准确地反映原始图像的内容和结构。在这项工作中,我们引入了使用可控差异模型进行语义分割的有效数据增强管道。我们提出的方法包括使用类别附加和视觉事先融合的类别添加的有效及时生成,以增强对真实图像中标记的类的关注,从而使管道能够生成精确数量的增强图像,同时保留分割标记的类的结构。此外,我们在合成和原始图像合并时实现了平衡算法的类平衡算法。对Pascal VOC数据集的评估,我们的管道证明了其在生成语义分割的高质量合成图像方面的有效性。我们的代码可在此HTTPS URL上找到。
典型的图像处理任务是识别两个相邻区域之间边界(强度变化)。从经典上讲,边缘检测方法依赖于不同类型的滤膜对图像梯度的计算。因此,所有经典算法都需要至少O(2 n)的计算复杂性,因为每个像素都需要处理(Yao,Wang,Liao,Chen和Suter,2017)。已经提出了一种量子算法,该算法应该与现有边缘提取算法相比提供指数加速(Zhang,lu和gao。2015)。但是,该算法包括一个复制操作和一个量子黑框,用于同时计算所有像素的梯度。对于这两个步骤,目前都没有有效的实现。提出了一种高效的量子算法,称为量子Hadamard Edge检测,以找到边界(Yao,Wang,
