摘要。开放式摄取分段是分割图像中可以命名的任何事物的任务。最近,大规模的视觉建模导致了开放式摄影片段的重大进展,但付出了巨大的成本,并增加了培训和注释工作。因此,我们询问是否可以使用现有的基础模型来合成特定类别集的按需有效分段算法,从而使其适用于开放式摄影库设置,而无需收集进一步的数据,注释或执行培训。为此,我们提出了Ovdiff,这是一种新颖的方法,它利用生成的文本对图像扩散模型来进行无监督的开放式摄影症。ovdiff合成支持任意文本类别的图像集,为每个类别及其周围环境(背景)创建一组原型。它仅依赖于预先训练的组件,并直接输出合成的分段,而无需训练。我们的方法在一系列基准上显示出很强的性能,在Pascal VOC上的先前工作中获得了超过5%的铅。
从 MRI 重建和分割皮质表面对于广泛的大脑分析至关重要。然而,大多数方法遵循多步骤的缓慢过程,例如连续的球面膨胀和配准,这需要相当长的计算时间。为了克服由这些多步骤引起的限制,我们提出了 SegRecon,这是一种集成的端到端深度学习方法,只需一个步骤即可直接从 MRI 体积联合重建和分割皮质表面。我们训练一个基于体积的神经网络来预测每个体素到多个嵌套表面的有符号距离以及它们在图谱空间中对应的球面表示。例如,这对于联合重建和分割白质到灰质界面以及灰质到脑脊液(软脑膜)表面很有用。我们通过在 MindBoggle、ABIDE 和 OASIS 数据集上进行的一组全面实验来评估我们的表面重建和分割方法的性能。我们发现,重建误差小于 0.52 毫米,而与 FreeSurfer 生成表面的平均 Hausdorff 距离则小于 0.97 毫米。同样,分割结果显示,与 FreeSurfer 相比,平均 Dice 值提高了 4% 以上,此外,在标准台式机上,计算时间从几小时大幅加快到几秒。
人工智能 (AI) 在医学成像任务中取得了巨大成果,并有可能在未来改善临床医生和患者的体验,但在将 AI 融入医学的道路上,存在许多实际、技术和社会挑战。在本文中,我们为 Helse Vest 的 AI 集成开发做出了贡献,并提出了一种与其现有研究 PACS 解决方案集成的脑肿瘤分割系统。我们调查了目前机器学习模型集成的可能性程度,以及是否需要额外的软件开发工作。所使用的机器学习模型是使用结合两个基于 Python 的深度学习库 fastai 和 MONAI 的库开发的。该库目前由 Mohn 医学成像和可视化中心 (MMIV) 的研究人员开发,我们将它与另一个最先进的框架进行比较,以量化其潜在的实用性。此外,我们将其部署在一个简单的交互式 Web 应用程序中。本论文包含三项研究,旨在讨论和回答我们的研究目标。所有研究均使用了 BraTS 2021 分割挑战赛数据集中的医疗数据,我们的项目是 MMIV 的 WIML 项目 [1] 的一部分。我们取得的成果为未来的开发人员在研究 PACS 中继续进行工作流集成机器学习开辟了道路,我们看到了未来研究的许多可能方向。
摘要 汽车导航严重依赖于自由空间检测。不幸的是,传统方法在恶劣的天气条件下会遇到困难,尤其是在白天。本文提出了一种解决方案,使用对比度恢复方法对车载摄像头捕获的图像进行处理。在几个方面,所提出的方法都推动了现有技术的进步。首先,通过计算最短路线图,可以更好地分割感兴趣的雾区域。其次,一起计算雾密度和地平线位置。然后,该方法通过假设道路平坦并检测垂直物体来恢复道路的对比度。最后,通过分割车辆前方的连通分量来确定自由空间区域。为了预测该方法的有效性,进行了实验验证。在从车载摄像头捕获的视频序列中提取的样本图像上显示了各种结果。所提出的方法是对依赖颜色分割和立体视觉的现有自由空间区域检测方法的补充。
图像分割是计算机视觉中的一个基本问题,涉及将图像分为多个段或区域,以简化表示形式,并使其对分析更有意义。在对象识别,医学成像和自动驱动器之类的任务中至关重要,其中理解图像中不同对象的空间组织至关重要[3,4]。在图像分割的背景下经常引用的一项基础工作是Long等。的完全卷积网络(FCN)用于半分割[6]。本文通过对CNN进行适应Pixel的预测而无需任何完全连接的层,从而彻底改变了该领域,从而实现了端到端训练并了解任意大小的图像。这种方法为随后的分割方法中的许多后续发展奠定了基础。变压器模型的引入为处理图像分割任务带来了新的视角,该任务在传统上以卷积网络为主导。Xie等人的Seg-前论文。[7]集成了专门针对半分割需求量身定制的变压器体系结构。segformer在其层次变压器编码中脱颖而出,该编码器有效地处理多尺度特征,对于在准确的分割所需的可变分辨率下捕获详细上下文至关重要。
自动从单个深度进一步检测可抓地的区域是布操作中的关键要素。布料变形的巨大变异性促使当前大多数方法专注于识别特定的握把而不是半偏零件,因为当地区域的外观和深度变化比较大的区域更小,更易于建模。但是,诸如折叠或辅助敷料之类的任务需要识别较大的细分市场,例如语义边缘带有更多信息,而不是点。因此,我们首先仅使用深度图像来解决变形衣服中细粒区域检测的问题。我们实施了T恤的方法,并最多定义了多达6个不同程度的语义区域,包括领口,袖袖和下摆的边缘,以及顶部和底部的握把。我们引入了一个基于U-NET的网络,以细分和标记这些部分。我们的第二个贡献与培训拟议网络所需的监督水平有关。大多数方法都学会
附近草图通常以 1 英寸 = 1,000 英尺的比例绘制,但如果没有这种地图,也可以接受 1:24,000 比例的美国地质调查局地图。附近草图应描绘所有相邻分区的地块线和名称、拟议分区地块约半英里范围内街道、公路、天然溪流和湿地的位置;约半英里范围内所有相邻公用设施系统的位置,流经拟议分区的溪流的自然排水路线,并在合理的情况下标明支流区域的边界。根据本小节提交的所有地图都应明确标明包含地图主题土地的区域、乡镇和范围。
在包含胶质母细胞瘤的 MRI 图像中,我们考虑了全自动脑肿瘤分割的问题。我们建议采用 3D MedImg-CNN(三维卷积神经网络)方法,该方法在实现高效率的同时实现了高结果,这是当前技术难以实现的组合。我们的 3D MedImg-CNN 直接在原始图像模态上形成,因此可以直接从数据中学习特征表示。我们建议采用两种通路的新型级联架构,每种通路都提供肿瘤细节模型。充分利用我们模型的卷积特性也有助于我们在一分钟内分割出完整的大脑图像。建议的 3D MedImg-CNN 与 CNN 分割系统的效率是使用骰子相似系数 (DSC) 确定的。在 2013 年、2015 年和 2017 年 BraTS 数据集上进行的实验表明,所提出的方法在文献中占主导地位,因为它是最有效的方法之一。关键词 脑肿瘤、卷积神经网络、深度学习、分割
图像分割是数字图像处理和分析中的一种常见技术,它通常基于像素的属性将图像划分为多个区域或区域。脑肿瘤分割是医学图像处理中的一项关键任务。早期识别脑肿瘤可以增强治疗选择并增加患者的生存机会。从医疗中获得的大量 MRI 图像中进行脑部分割对于癌症诊断和其他脑部疾病来说是一项具有挑战性且耗时的任务。这就是为什么建立一个有效的自动图像分割系统对于诊断脑肿瘤和其他常见的神经疾病至关重要。本研究的目标是对基于 MRI 的脑肿瘤分割方法进行系统回顾。近年来,深度学习技术已被证明可用于自动分割并获得了突出地位,因为这些方法产生了更好的结果,因此比其他方法更适合这项任务。深度学习算法也可用于快速客观地处理大量基于 MRI 的图像数据。有许多关于传统基于 MRI 的脑肿瘤图像分割算法的综述论文。