焊接过程产生的图像噪声(例如弧光,飞溅和烟雾)给基于激光视觉传感器的焊接机器人带来了巨大的挑战,可以定位焊接接缝并准确地进行自动焊接。当前,基于深度学习的方法超过了灵活性和鲁棒性的传统方法。但是,它们的重大计算成本导致与自动焊接的实时要求不匹配。在本文中,我们对卷积神经网络(CNN)和变压器的有效混合体系结构(称为动态挤压网络(DSNET))进行实时焊接接缝分段。更准确地说,开发了一个轻巧的分割框架,以充分利用变压器结构的优势,而无需显着增加计算开销。在这方面,旨在提高其功能多样性的高效编码器已被设计并导致了编码性能的大幅改进。此外,我们提出了一个插件轻巧的注意模块,该模块通过利用焊接接缝数据的统计信息并引入线性先验来产生更有效的注意力权重。使用NVIDIA GTX 1050TI对焊缝图像进行广泛的实验表明,与基线方法Transunet相比,我们的方法将参数的数量减少了54倍,将计算复杂性降低了34倍,并将推理速度提高33倍。dsnet可实现较高的准确性(78.01%IOU,87.64%骰子)和速度性能(100 fps),其模型复杂性和计算负担较低。该代码可在https://github.com/hackerschen/dsnet上找到。
我们提出了一个半监督的域适应框架,用于来自不同图像模式的脑血管序列。现有的最新方法集中在单一模态上,尽管可用的脑血管成像技术广泛。这可能导致重大分布变化,从而对跨模式的概括产生负面影响。By relying on annotated angiographies and a limited number of an- notated venographies, our framework accomplishes image-to-image translation and se- mantic segmentation, leveraging a disentangled and semantically rich latent space to represent heterogeneous data and perform image-level adaptation from source to tar- get domains.此外,我们降低了基于周期的架构的典型复杂性,并最大程度地减少了对抗性训练的使用,这使我们能够通过稳定的培训构建一个高效且直观的模型。我们评估了有关磁共振血管造影和静脉曲张的方法。在源域中实现最先进的性能时,我们的方法在目标域中达到了仅8个目标域的骰子得分系数。降低了9%,突出了其在不同模态上稳健脑血管图像分割的有希望的潜力。
1 Gustave Roussy-Centresup。Elec-therapanacea herec-therapanacea rashiation疗法中心和肿瘤学中的人工智能,Gustave Roussy Cancer Campus,Villejuif,法国2 Artorg 2 Artorg生物医学工程中心巴黎 - 萨克莱和阿里亚·萨克莱,法国4 Inserm,U1030,巴黎,法国5大学,巴黎大学,法国巴黎UFR deMédecine,法国6实验室MICS,Centralsup´elec-elec-University Paris-Saclance
4。连续监视和策略更新:一旦部署了零信托策略,MSS便提供了监视任何违反策略的功能并检测网络中删除的特定流量。这使管理员可以在有效的情况下更新零信托策略,但正在拒绝新服务,或者监视违反流量规则的特定端点。MSS规则支持“ Drop+Monitor”操作,该操作对开关进行编程以删除数据包,同时创建每个掉落的数据包的副本,并将其镜像到ZTX设备。设备分析每个镜像数据包和记录流量元数据(包括源,目标和L4服务),然后将其流式传输到CloudVision策略构建器,该策略构建器生成更新的策略建议。
1 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 51 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
Antoine Christiaens,SéverineHenrard,Alan Sinclair,Florence Tubach,Dominique Bonnet-Zamponi等。在患有糖尿病的老年人的降低葡萄糖疗法:系统 - ATIC的建议审查中。美国医疗董事协会杂志,2023,101016/j.jamda.2022.12.018。hal-03965938
自动脑分割算法通常依赖高分辨率 T 1 加权 (T1w) 或 T 2 加权 (T2w) 解剖图像来注释组织类型。这些算法依赖于不同脑组织和区域的体素对比度和强度差异来描绘脑组织和区域边界。大多数情况下,成人和儿童的脑组织和区域边界很容易描绘;然而,它们在婴儿数据中通常不太准确。这可能是由于大脑在出生后头几年经历了重大变化,例如髓鞘形成、突触形成和神经胶质增生 1,15,16 。例如,0 至 3 个月大的婴儿的 GM 和 WM 体素对比度与成人相反(图 2),从大约 5-9 个月开始对比度降低,导致组织看起来非常相似(图 2),而在 5-9 个月及以后的后期阶段,大脑开始模仿成人大脑的组织对比度 7,17,18。
高光谱成像为分析人工生态系统中地上植物的特征提供了强大的工具,能够提供涵盖不同波长的丰富光谱信息。本研究提出了一种高效的高光谱数据分割和后续数据分析流程,通过使用稀疏混合尺度卷积神经网络集成,最大限度地减少了用户注释的需求。分割过程利用集成的多样性,以最少的标记数据实现高精度,从而减少了劳动密集型的注释工作。为了进一步增强稳健性,我们结合了图像对齐技术来解决数据集的空间变异性问题。下游分析侧重于利用分割数据处理光谱数据,从而实现植物健康状况的监测。该方法为光谱分割提供了一种可扩展的解决方案,并有助于在复杂受控环境中对植物状况进行切实可行的洞察。我们的研究结果证明了将先进的机器学习技术与高光谱分析相结合,可以实现高通量植物监测。
心脏图像的分割是许多患者特定计算管道的可变组成部分,但其对模拟结果的影响仍未得到充分了解。探索赛车变异性影响的障碍是建立心室统计形状模型的技术挑战。在这项研究中,我们通过创建一个统一的形状模型(包括心外膜和eCardium),改善了以前的形状分析。我们在Shapeworks中测试了四种技术,以生成心室形状模型:标准,多体,混合,混合多域和地球距离。使用所有11个分割的多域和混合多域生成了形状模型,而Geodesic距离方法使用四个分段的子集生成了形状模型。每个形状模型在分段变异性的空间依赖性特征上,包括壁厚,环直径和基础截断。虽然三种方法中的每一种都有好处,但混合多域方法为最精确的形状模型提供了最少的点,并且在大多数应用中可能最有用。
摘要 - 超声(US)图像中胎儿大脑皮层下区域的生长可以帮助鉴定出异常发育的存在。手动分割这些区域是一项艰巨的任务,但是最近的工作表明,它可以使用深度学习自动化。然而,应用验证的模型来表现出徒手的美国量通常会导致由于获取和对齐的巨大差异而导致性能下降。在这项工作中,我们首先证明测试时间适应(TTA)可用于在存在真实和模拟域移动的情况下改善模型性能。我们通过将规范地图集作为解剖学的先验提出了一种新型的TTA方法。在存在各种域移位的情况下,我们基准了不同TTA方法的绩效,并证明了我们提出的方法带来的改进,这可能会进一步促进对胎儿脑发育的自动监测。我们的代码可从https://github.com/joshuaomolegan/ tta-for-3d-fetal-subcortical-sementation获得。关键字 - 测试时间适应,超声,分段