Cichos 解释道:“在我们的实现中,我们使用了尺寸仅为几微米的合成自推进粒子。我们展示了这些粒子可用于计算,同时提出了一种抑制干扰效应(如噪音)对胶体粒子运动影响的方法。”胶体粒子是精细分散在其分散介质(固体、气体或液体)中的粒子。
摘要:执行适当的量子信息处理的关键技术是在独立的单个光子之间获得高可见性量子干扰。影响量子干扰的关键元素之一是当单个光子通过分散介质时发生的组速度分散体。我们从理论上和实验上证明,如果两个独立的单个光子经历了相同量的脉冲拓宽,则可以取消组速度分散对两光子干扰的影响。该分散取消效果可以应用于具有多个独立单个光子的多路线线性干涉仪。由于多路径量子干涉仪是量子通信,光子量子计算和玻色子采样应用的核心,我们的工作应在量子信息科学中找到广泛的适用性。
(或溶剂混合物),可进一步加工成可印刷或可涂覆的油墨。这些悬浮液的行为通常用 Derjaguin-Landau-Verwey-Overbeek (DLVO) 理论描述,[3] 这意味着悬浮液中纳米片的浓度有一个上限,超过该上限悬浮液就会变得不稳定。[4] 尽管如此,高浓度悬浮液(油墨)对于形成渗透粒子网络是必要的,[5] 并且满足高通量印刷和涂层方法的流变学要求(例如高粘度)。无论浓度如何,悬浮液在热力学上都是不稳定的,并且粒子倾向于通过聚集来降低其表面能。[6] 为了降低沉降速度,必须最小化溶剂和 2D 材料之间的表面能差异,[3] 这使得分散介质的选择限制为少数溶剂,而这些溶剂的溶解度范围可能不适合后续加工。在传统的油墨配方中,为了解决上述问题,将二维材料悬浮液加工成可印刷或可涂覆的油墨,需要使用表面活性剂、粘合剂和流变改性剂等添加剂。[7–10] 例如,需要高浓度的聚合物粘合剂(如70 mg mL-1乙酸丁酸纤维素)来将石墨烯油墨的粘度提高到适合丝网印刷的水平。[11] 由于典型的添加剂会对电子性能产生不利影响(例如,
摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
摘要 - 鸡蛋壳通常数量很大,但主要不足。这种情况需要将它们滥用到环境中。因此,这种处置技术污染了环境,并导致携带疾病的生物的繁殖,从而对公共卫生产生严重的不利影响。在这项工作中,收集了鸡蛋壳,并在三个不同的年龄(存储时间)(例如5、15和30天)中加工成粉状形式。在每种情况下,鸡蛋壳粉(CEP)用作制造电容器的介电材料。制造过程中使用的分散介质是由干木薯淀粉(DC)制备的浆液。为每个考虑的年龄开发了五个电容器样品。评估了CEP,DC和捏造的电容器样品的电势。发现CEP的CARR指数约为9.00%,而DC的Carr指数约为11.41%。在20 O C至70 O C的温度范围内,电容器样品的电容从8.93、7.62、7.66降低至2.15,在5、15和30天分别处理的蛋壳分别为5.59至1.84(全部为NF)。基于EIA协议,基于JIS标准的同一年龄差异趋势的温度系数为-0.97,-1.44和-1.44(%/ O C),基于JIS标准和 - 0.90,-1.39和 - 1.34(%/ O C)。随着样品的温度在被考虑的范围内升高,总体相对介电常数从9137降低到1883年。从统计学上讲,CEP之间的相对介电常数为15天到30天的相对介电值无关紧要。电容器样品与常规陶瓷电容器进行了比较时表现出良好的性能能力。关键字 - 电容,木薯流出,流动性,回收利用,相对介电常数,浪费,存储时间
在弯曲的时空中,量子闪光导致颗粒的自发发射。著名的是,如果弯曲的时空包含事件范围,则可以通过鹰效应[1,2]来散发成对的颗粒。但是,(静态)黑洞事件范围并不是导致粒子发射的唯一“时空曲率状态”。模拟空间是有效的波介质,可以在可配置的弯曲空间上进行桌面实验[3]。除了静态黑洞[4-10]外,还可以创建例如(静态)白洞事件范围[4,6,8,11 - 15],旋转几何形状类似于Kerr黑洞[16,17],扩展了宇宙[18-20]或什至(静态)两个马相互作用[21,22]。对于具有静态视野的这些系统,地平线上的波浪的经典频率转移一直是传统的基准来证明模拟重力物理学,尽管也观察到了无法与地平线相关的波浪的散射[6,11,11,13,23,24]。相关的颗粒对粒子的相关对被认为是量子鹰效应的明确标志[26,27],因此已经对流体系统进行了广泛的研究,其中已经研究了它们在各种色散方面的纠缠[28-37]。然而,这些研究并未对比地平线和无水平的自发发射,并且在其他模拟系统和许多模式中都没有做到这一点。ergo,时空曲率对重力类似物中量子发射的影响的问题出现了:是什么区别于地平线的发射(鹰效应)与地平线发射?在这封信中,我们使用分散模拟光学系统[4,6,8,12,38 - 40]证明了不同“时空曲率状态”之间的过渡。由于分散,每种频率模式在带有或不带有ho子的时空时都会经历不同的运动学。为了进一步查明物质,我们使用了一个系统,其中粒子是从一个点发出的:大约阶梯形的光学脉冲通过分散介质移动,我们在1D中考虑。脉冲强度通过光学KERR效应增加了介质的折射率N,从而产生了移动的折射率前部(RIF)。台阶下的光被增加的索引减慢,即,某些频率的光将在脉搏速度以下放慢速度并捕获到RIF中。这类似于黑洞事件范围内波的运动学[3,41,42]。在其他频率下,光线遵循不同的运动学场景(即,波浪的轨迹)。因此,这种简单的光学系统使我们能够在这些不同情况下对比量子发射。此外,存在散射的分析解决方案。我们介绍了RIF模式的所有可能的运动场景,从而解释了阶跃高度(索引变化中的幅度)和系统分布之间的相互作用如何产生时空曲率的不同状态。此外,我们使用对数负性量化了模式的两部分纠缠,这是单调的纠缠。然后,我们使用[43,44]中开发的一种分析方法来描述模式在RIF处的散射,并计算到时空曲率的每个策略中的自发发射。关键模式的纠缠光谱表示多模纠缠,这高度依赖于运动学方案。因此,我们完成了所有模式对之间在时空曲率的所有模式对之间计算的纠缠程度。
1。电荷保护定律。库仑定律。电场强度。叠加原理。连续电荷分布的模型。均匀带电环和灯丝的电场强度。2。电场强度向量的通量。高斯定理用于静电场强度矢量。将高斯定理应用于点充电和平面。3。电场电位。点充电的电势。静电场载体与电势之间的关系。泊松方程。均匀带电的球体的潜力。4。电偶极子。点偶极子的场强和静电电势。外部电场中的电偶极子(力,扭矩,势能)。5。电容的概念。具有不同几何配置的电容器的示例。平行板电容器电容的推导。6。磁场B矢量。带有电流的生物萨瓦特 - 拉普拉斯定律的导体的磁场。具有直流电流的有限长度直导体的磁场。7。磁场矢量的循环定理。带有直流电的环中心的磁场。在长螺线管中的磁场表达。电感。8。电动力。DC电路中的功率。9。广义欧姆定律(差异和整体形式)。Joule-Lenz Law(差异和积分形式)。电磁场。麦克斯韦的方程式以整体和差异形式,其物理含义。不同单位系统中的基本电磁量和定律:SI,CGS和Gaussian。10。来自麦克斯韦方程的电磁平面波方程的推导。电磁平面波的横向性质,电场和磁场之间的关系,电场和磁场的相位振荡。11。平面谐波的极化状态。椭圆形,圆形和线性极化。偏振和自然光,MALUS定律,极化程度。12。光的衍射。 huygens-fresner原理:定义和数学表述。 菲涅耳螺旋,菲涅耳区板。 13。 通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。 在不透明屏幕的直线边缘处的衍射。 cornu螺旋。 15。 fraunhofer衍射。 衍射模式的属性。 16。 光的干扰。 干扰形成,基本关系和干扰场的特征的条件。 干扰条纹的类型。 17。 电磁波的折射。 Snell定律的推导。 总内部反射。 18。 菲涅尔公式。 19。 20。光的衍射。huygens-fresner原理:定义和数学表述。菲涅耳螺旋,菲涅耳区板。13。通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。在不透明屏幕的直线边缘处的衍射。cornu螺旋。15。fraunhofer衍射。衍射模式的属性。16。光的干扰。干扰形成,基本关系和干扰场的特征的条件。干扰条纹的类型。17。电磁波的折射。Snell定律的推导。总内部反射。18。菲涅尔公式。19。20。在反射和折射过程中电磁波极化。电磁表面波。使用菲雷斯公式的应用:布鲁斯特定律。在两个介质边界处电磁波的相位关系。光的分散。频率和空间分散。频率分散的电子理论。频率频率依赖性。在分散介质中电磁波包的传播。组速度。瑞利公式。21。培养基的非线性极化。 非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。 22。 电磁波在介电波导中传播的特征。 23。 光学平面波导。 介绍波导模式。 24。 光纤。 纤维结构。 光纤中的光传播。 25。 激光的分类(类型)。 各种类型激光器的特征。 激光辐射的主要特征及其评估方法。 26。 半导体中的吸收和光辐射的产生。 发光二极管。 最简单的半导体激光器的设计和操作。 27。 光子晶体。 使用光子晶体用于信息传输,存储和处理。 光子晶体中带结构的形成。培养基的非线性极化。非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。22。电磁波在介电波导中传播的特征。23。光学平面波导。介绍波导模式。24。光纤。纤维结构。光纤中的光传播。25。激光的分类(类型)。各种类型激光器的特征。激光辐射的主要特征及其评估方法。26。半导体中的吸收和光辐射的产生。发光二极管。最简单的半导体激光器的设计和操作。27。光子晶体。使用光子晶体用于信息传输,存储和处理。光子晶体中带结构的形成。
本文讨论了与求解麦克斯韦方程的电磁理论和数值方法有关的几篇关键论文。麦克斯韦(Maxwell)于1865年发表的一篇论文提出了电磁场的动力学理论。后来,Chew等。(2020)使用标量和矢量电位公式来简化量子麦克斯韦的方程。本文还引用了几本关于电磁波理论的书籍,包括Kong(1990)和Balanis(2012)的“电磁波理论”和“高级工程电磁学”。讨论了与有限差分时间域(FDTD)方法有关的几篇论文,该方法是由Yee于1966年引入的。FDTD方法是一种用于求解Maxwell方程的数值技术,并且已广泛应用于各个领域。本文还提到了FDTD方法的几种关键算法和应用,包括使用完美匹配的层(PML)吸收电磁波。PML首先是由Berenger于1994年引入的,此后已被广泛用于数值模拟。讨论的其他论文包括与FDTD方法的表面阻抗边界条件相关的论文,以及该方法对天线设计和海洋电磁作用的应用。总的来说,本文提供了与电磁理论和求解麦克斯韦方程的数值方法相关的关键论文和概念的全面概述。研究人员已经开发了使用有限差分时间域(FDTD)算法在复杂介质中模拟电磁波的各种方法。mag。,IEEE Trans。修订版这些方法涉及完美的匹配层(PML),用于在边界处吸收波浪并防止反射。一种方法,称为卷积完美匹配的层(CPML),已被证明是对任意媒体的高效和有效的。此方法使用卷积操作在FDTD算法中实现PML。其他研究人员研究了使用差异形式和指标来开发新方法来模拟复杂介质中的电磁波。这些方法已应用于各种问题,包括磁化铁氧体中电磁波的模拟和人体组织的建模。FDTD算法也已用于模拟电磁波和分散材料(例如等离子体电层)之间的相互作用。在这些模拟中,使用数值方法求解波方程,该方法考虑了材料的分散属性。此外,研究人员还开发了使用卷积PML在光导天线中实施开放边界问题的方法。这些方法涉及使用递归卷积操作在FDTD算法中实现PML。总体而言,在复杂介质中模拟电磁波的新方法和算法的开发是一个活跃的研究领域,在电磁,光学和生物医学等领域中应用。研究人员一直在积极开发和应用有限差分时间域(FDTD)方法来解决复杂的电磁问题。在信誉良好的期刊(例如IEEE Microw)上发表的研究论文。该方法已成功用于分析非线性电路元件,模拟金属纳米甲膜和研究纳米颗粒。为了提高数值稳定性和准确性,研究人员提出了各种技术,例如网状分级和自动网格产生。这些进步使得对复杂几何形状的更有效,更可靠的模拟为材料科学和生物医学工程等领域的新应用铺平了道路。本文讨论了有限差分时间域(FDTD)方法的各种进步,以模拟复杂介质中的电磁波。研究人员推出了新技术,以提高FDTD模拟的准确性和稳定性,例如用于非矩形边界的张量FDTD公式和用于有效计算的亚架算法。子生产是一种通过将仿真域分为较小的子网格来降低计算复杂性的方法,从而使收敛速度更快并提高了精度。本文重点介绍了几种子生产方法,包括局部网格细化,子电池FDTD建模和三维子生产算法。除了亚种植外,研究人员还研究了提高FDTD模拟稳定性的方法。这包括研究可以在薄壁配方中产生的寄生解决方案,并为FDTD亚生成而产生一致且可证明的稳定配方。最近的研究重点是开发和推进有限差分时间域(FDTD)方法,用于模拟复杂的地球层系统中的电磁波传播。天线宣传,J。Comput。本文还提到了有关FDTD方法的其他几项研究,包括将EMP耦合到薄支撑杆和电线的有限差分分析,通过FDTD方法对光纤的快速单模表征以及圆柱形FDTD通过Anisotropic Dippiptipic Dippipic Diptrical FDTD分析通过各种倾向的浸入式浸润的地球媒体。研究探索了FDTD建模的各种应用,包括围绕地球球周围的冲动精灵(极低的频率)传播,Earth-Ionosphere波导的3D全局模型以及提高计算效率的并行化技术。研究人员还研究了提高FDTD模拟中稳定性和准确性的方法,例如质量大块,无条件稳定的隐式有限差异方法以及结合有限元方法(FEM)和FDTD的混合方法。此外,已经提出了各种新颖的算法和方案来增强FDTD方法的稳定性和性能,包括使用交替方向隐式方法和本地一维方案。在FDTD建模和仿真技术中的这些进展有望有助于提高对复杂的地球层系统中电磁波行为的理解和预测,并在电信,导航和地球物理研究等领域具有潜在的应用。有限差分时间域(FDTD)模拟的领域多年来已经显着提高,并开发了各种算法和方法,以提高准确性,分散性能和计算效率。phys。和Phys。XIU的另一本书着重于用于随机计算的数值方法。J.韩国物理学。e探索了对电磁波传播建模的不同方法,包括高阶FDTD方案,晶格模型和物理知识的机器学习。这些研究的重点是提高FDTD算法的准确性和分散性能,以及开发新方法,用于以控制精度和分散的控制顺序制定FDTD方案。研究人员还研究了深度学习技术(例如神经网络和深度丽思方法)的使用来解决部分微分方程和电磁问题。该领域的一些值得注意的论文包括Karniadakis等人,Raissi等,Sirignano等人和Qi等人的论文,这些论文证明了物理学知识的机器学习和深层神经网络的潜力,以解决复杂的电磁问题。此外,Hastings,Schneider和Broschat等研究人员还探索了Monte-Carlo FDTD技术,用于粗糙的表面散射。总体而言,先进的FDTD算法和方法的开发使电磁波传播的更准确,有效的模拟对诸如天线设计,微波工程和材料科学等田地的影响有显着影响。LeMaître和Knio的一本书为“用于不确定性量化的光谱方法:用于计算流体动力学的应用”,使用光谱方法探索了不确定性量化技术。几篇文章讨论了多项式混乱的使用来分析计算流体动力学(CFD)和电磁模拟中的几何不确定性。金属用于改进光学相干断层扫描。Soc。一篇文章介绍了一种基于FDTD的方法,用于建模几何不确定性,而另一篇是在有限差分时间域(FDTD)方法中进行不确定性分析。其他文章涵盖了电磁波传播,辐射和散射等主题;周期性结构;和光子带结构。一些文章讨论了使用非正交FDTD方法计算光子绿色功能和传输/反射系数的使用。文本还提到了其他一些研究论文,这些论文探讨了主题,例如金属光子晶体中的负折射,计算光子带结构,并分析负载的传输线负反射 - 反射 - 索引矩形。C. D.不连续的Galerkin时域模型,具有多速率时间步进的元图几何形状。在2021年IEEE MTT-S国际微波研讨会(IMS)(IEEE,2021).Guo,S。等。81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。 A.,Eshein,A.,Taflove,A。 &Backman,V。光学相干断层扫描中的五帧对比的起源。 生物疾病。 选择。 Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。 散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。 物理。 修订版 Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。A.,Eshein,A.,Taflove,A。&Backman,V。光学相干断层扫描中的五帧对比的起源。生物疾病。选择。Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。物理。修订版Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.Lett。(2013)。章节Google Scholar Li,Y。等。纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。SCI。 adv。 Spectrochim。 acta pt a:mol。 A.SCI。adv。Spectrochim。acta pt a:mol。A.7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q. 有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。 生物分子光谱。 269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。 &Chung,J.-Y. 对超高场磁共振成像的鸟笼RF线圈构型的比较研究。 传感器22,1741(2022)。网站广告Google Scholar Taflove,A。 FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。 Martin,R。M.(2004)电子结构:基本理论和实用方法。 剑桥大学。 按。 Sholl,D。S.和Steckel,J。 (2009)密度功能理论。 John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。 修订版 mod。 物理。 64,1045–1097。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。 多人。 计算。 技术。 1,73–84。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。 IEEE J. Multisc。 多人。 计算。 技术。 15。7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q.有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。生物分子光谱。269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。&Chung,J.-Y.对超高场磁共振成像的鸟笼RF线圈构型的比较研究。传感器22,1741(2022)。网站广告Google Scholar Taflove,A。FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。Martin,R。M.(2004)电子结构:基本理论和实用方法。剑桥大学。按。Sholl,D。S.和Steckel,J。(2009)密度功能理论。John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。修订版mod。物理。64,1045–1097。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。多人。计算。技术。1,73–84。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。IEEE J. Multisc。多人。计算。技术。15。&Brodwin设计和基于光子晶体的生物传感器的分析,以检测电磁波传播的不同血液成分模拟地面渗透雷达的电磁波传播,使用GPRMAX软件在倾斜和完全型电场沿浸入量的倾斜度范围内的ectriccentric LWD钻孔传感器的数值建模在浸入和完全各向异性的范围内实现的范围范围内的范围内的范围内的范围内的范围内的范围。在各向异性的地球 - 离子层波导中,使用FDTD方法减少了地球 - 离子层波导中FDTD方法的角度分散,用于在地球 - 离子层ldf无线电波中传播VLF-LF无线电波在地球 - iOn层波导中的vlf-iOn层fdtd传播中VLF-lf-lf的传播中VLF-LF的传播中的vlf-ion层传播模型3的vlf-ion层传播。在地球 - 离子层波导中的长距离VLF传播FDTD模型,用于低海拔和高空闪电产生的EM领域通过电离层等离子体的不规则进行高频波通过FDTD方法网格基于电网基于电网的,基于电磁波的时间域模型的电动磁性反射的电动层的动力学反射的电流模型的电流层模型的模型折射率为阴性指数的媒体中的折射文章讨论了使用有限差分时间域(FDTD)方法的使用来分析各种电磁现象,包括负屈光度指数分离和光子纳米夹。1,85–97。Fox,A。M.(2006)量子光学:简介。卷。牛津大学。按。Gerry,C.,Knight,P。和Knight,P。L.(2005)入门量子光学。剑桥大学。按。Miller,D。A.B.本文还提到了几篇应用FDTD方法研究各种主题的特定论文,包括: *负折射率 - 索引超材料(2004 IEEE MTT-S International Microwave研讨会消化) *光子纳米喷气机及其在光线范围内的光线范围及其在nanoparticles(nanoparticles for Nanoparticles(Optigs)的后范围(2004年)的增强, 2022) * Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements (Journal of Optical Society America, 1999) The article also discusses the use of FDTD to analyze other topics, such as: * Photonic band-gap structures (Microwave Optics Technology Letters, 2004) * Surface grating couplers (Laser Photonics Review, 2021) *在隔离器上硅光子晶体波导具有减少损耗(光学量子电子,2007年),该文章得出结论,FDTD方法是模拟和分析各种电磁现象的强大工具,并且已广泛地用于光孔和纳米技术领域。(2008)科学家和工程师的量子力学。剑桥大学出版社。na,D.-Y。和Chew,W。C.(2020)量子电磁有限差分时间域求解器。量子量表2,253–265。na,D.-Y.,Zhu,J。,&Chew,W。C.(2021)对有限大小的分散介质的对角线化:具有数值模式分解的规范量化。物理。修订版A 103,063707。na,D.-Y.,Zhu,J.,Chew,W。C.和Teixeira,F。L.(2020)量子信息保存计算电磁学。物理。修订版A 102,013711。Thiel,W.,Tornquist,K.,Reano,R。和Katehi,L。P. B.(2002)使用时域方法对RF-内蒙切换中的热效应进行了研究。在2002年IEEE MTT-S国际微波研讨会摘要(Cat。编号02CH37278)。alsunaidi,M。A.,Imtiaz,S.M。S.和El-Ghazaly,S.M。(1996)使用全波时间域模型对微波晶体管的电磁波影响。ieee trans。微量。理论技术。44,799–808。Grondin,R。O.,Elghazaly,S。M.,&Goodnick,S。A.(1999)对半导体和全波电磁学中电荷运输的全球建模综述。ieee trans。微量。理论技术。47,817–829。Piket-May,M。等。(2005)具有活性和非线性组件的高速电子电路。计算电动力学:有限差分时间域方法ch。15。sui,W.,Christensen,D。A.和Durney,C。H.(1992)将二维FDTD方法扩展到具有主动和被动的总元件的混合电磁系统。ieee trans。微量。理论技术。40,724–730。Decleer,P。和Vande Ginste,D。(2022)基于用于纳米线建模的ADHIE-FDTD方法的混合EM/QM框架。IEEE J. Multisc。多人。计算。技术。7,236–251。ieee trans。Geosci。 遥感 43,257–268。Geosci。遥感43,257–268。43,257–268。hue,Y.-K。,Teixeira,F。L.,Martin,L。S.和Bittar,M。S.(2005)通过浸入地层对钻孔中偏心LWD工具响应的三维模拟。Zhang,Y.,Simpson,J。J.,Welling,D。和Liemohn,M。(提高了麦克斯韦方程的效率FDTD模型用于太空天气应用)研究人员一直在努力提高用于电磁模拟中的数值方法的稳定性和准确性,尤其是有限端口 - 递观时间域(FDDDDDDDDDDDDDDDDDDDDDDDD)。各种研究已经探索了扩展FDTD稳定性极限的方法,包括使用空间滤波,自回旋模型和模式跟踪。其他研究重点是优化网格几何形状,插值方案和数字过滤,以提高准确性。此外,还有关于应用其他领域的技术(例如量子信息和金属镜)来改善FDTD模拟的研究。一些研究还探讨了麦克斯韦的方程和拓扑观点的使用在理解电磁现象中。此外,研究人员开发了用于敏感性分析,形状优化和自适应网状精炼的新方法。这些努力的目的是开发更准确,有效的数值方法,以模拟复杂的电磁系统,例如在等离子体模拟,电离层不规则和元图设计中发现的系统。在2007年出版物中探索了电磁学的数值方法。该研究结合了有限的差异时间域和矩技术的方法,以模拟与各种地面环境相互作用的复杂天线。单独的研究论文提出了一种混合方法,合并了射线追踪和FDTD方法,以准确模拟室内无线电波传播。另一项研究提供了使用统一框架对计算电磁学的全面概述。此外,在2008年出版物中讨论了光子晶体的概念,重点是控制光流。