地上部和根系结构是作物生产力的基础。在人工选择驯化和驯化后育种的历史中,水稻的结构与其野生祖先相比发生了显著变化,以满足农业要求。我们回顾了最近关于水稻发育生物学的研究,重点关注决定水稻植株结构的组成部分;地上部分生组织、叶片、分蘖、茎、花序和根。我们还重点介绍了影响这些结构并在栽培品种中利用的自然变异。重要的是,从发育突变体中鉴定出的许多核心调控因子已被用作育种中的弱等位基因,对这些结构产生中度影响。鉴于功能基因组学和基因组编辑的激增,本文讨论的水稻植株结构的遗传机制将为进一步推动不仅在水稻而且在其他作物及其野生近缘种中的育种提供理论基础。
摘要 转化是涉及基因组编辑的现代育种技术的关键步骤。体外组织培养和再生的要求阻碍了该技术应用于许多作物物种的具有商业重要性的品种。为了解决这个问题,我们开发了一种简单且可重复的小麦 (Tritticum aestivum L.) 植物内转化方法。我们的植物内粒子轰击 (iPB) 方法利用茎尖分生组织 (SAM) 作为靶组织。SAM 包含一个称为 L2 的表皮下细胞层,生殖细胞后来在花器官发生过程中从中发育而来。iPB 方法还可用于通过瞬时 CRISPR/Cas9 表达或直接递送 CRISPR/Cas9 核糖核蛋白进行基因组编辑。在这篇综述中,我们描述了 iPB 技术,并概述了其在植物转化和基因组编辑中的当前和未来应用。
图1:旨在评估P ESR1驱动基因158激活的基因构建体的实验验证。烟草芽片段用159个农杆菌(GV3101)转化,其中包含cmylcv :: ruby(a)和p在esr1 :: ruby 160(b)显示有限或没有愈伤组织形成。虽然35s :: AtWind1 - 161 AteSr1 :: Ruby(c)的共表达显示出更大的愈伤组织形成和ATESR1 162启动子的激活。(d)愈伤组织形成的定量分析,如区域所示(MM 2)。Explants 163用CAMV 35S :: AtWind1转换出来,显示出大约3-4倍的愈伤组织形成。164(e)在ATESR1启动子下方的IPT等发育调节基因及其165通过ATWIND1激活的表达诱导了快速的愈伤组织诱导,并形成了芽根尖分生组织,166个导致了phytohormone-fime Hormone培养基中的De从头寄生虫的诱导。167
图1:旨在评估P ESR1驱动基因158激活的基因构建体的实验验证。烟草芽片段用159个农杆菌(GV3101)转化,其中包含cmylcv :: ruby(a)和p在esr1 :: ruby 160(b)显示有限或没有愈伤组织形成。虽然35s :: AtWind1 - 161 AteSr1 :: Ruby(c)的共表达显示出更大的愈伤组织形成和ATESR1 162启动子的激活。(d)愈伤组织形成的定量分析,如区域所示(MM 2)。Explants 163用CAMV 35S :: AtWind1转换出来,显示出大约3-4倍的愈伤组织形成。164(e)在ATESR1启动子下方的IPT等发育调节基因及其165通过ATWIND1激活的表达诱导了快速的愈伤组织诱导,并形成了芽根尖分生组织,166个导致了phytohormone-fime Hormone培养基中的De从头寄生虫的诱导。167
图 2 玉米雌花序穗的雌性化。AI 玉米穗发育的 SEM。A 未成熟穗显示抑制苞片(SB)腋中 SPM 的规则叶序。B SPM 分成两个 SM。C、D SM 形成两个颖片(GL)原基并产生两个 FM,即上部(UFM)和下部(LFM)。EH UFM 形成花器官原基,心皮的周围细胞形成雌蕊脊(GR),变成称为花丝的长柱头。I 去除 GL 露出 LFM,它也形成花器官原基,但在发育早期中止。JA 从穗尖长出一簇花丝。K 穗中生殖分生组织转变(左)和小穗雌性化(右)的示意图。L,外稃;P,内稃;ST,雄蕊; PI,雌蕊;O,胚珠。比例尺:100 μm。
背景:顶花基因1(TFL1)属于磷脂酰乙醇胺结合蛋白(PEBP)家族,在高等植物花分生组织身份决定及开花时间调控中起重要作用。结果:在油菜基因组中鉴定出5个BnaTFL1基因拷贝。系统发育分析表明,5个BnaTFL1基因拷贝与祖先种芜菁和甘蓝中相应的同源拷贝聚集在一起。BnaTFL1的表达局限于花芽、花、种子、角果和茎组织中,并表现出不同的表达谱。利用CRISPR/Cas9技术产生的BnaC03.TFL1敲除突变体表现出早花表型,而其他基因拷贝的敲除突变体开花时间与野生型相似。此外,BnaTFL1基因单个拷贝的敲除突变体表现出了植株结构的改变,BnaTFL1突变体的株高、分枝起始高度、分枝数、角果数、每角果种子数和主花序上的角果数均显著减少。
细胞分裂素(CK)是一种关键的植物激素,但其作用通常被误解,部分原因是依靠植物科学的分子遗传时代之前对旧数据的依赖。在这次迷你审查中,我们研究了CK在控制流动植物的生殖芽结构中的作用。我们从对CK在射击分支中的作用进行了长时间的重新审查,并讨论了CK在此过程中确实起着重要作用的遗传证据相对较少。然后,我们检查了CK在挖掘植物在生殖发育过程中启动的植物,种植者,果实和种子的作用,以及它们如何在时空中排列。CK在控制这些过程中的主要作用的遗传证据更加清晰,并且CK在增加大多数生殖结构的大小和数量方面具有深远的影响。相反,生殖阶段中CK水平的衰减可能有助于减小后来的炎症的器官尺寸,以及在流动结束期间的最终停滞侵蚀分生组织。我们通过讨论如何使用该信息来提高作物产量来完成。
与饱和脂肪酸合成的脂肪酰基 - 酰基载体蛋白硫酯酶B(FATB)基因在脂肪酸含量和储存脂质的组成中起着重要作用。然而,FATB在大豆中的作用(甘氨酸最大)的特征很差。本文提出了10个假设FATB成员的初步生物信息学和分子生物学研究。结果表明,GMFATB1B,GMFATB2A和GMFATB2B包含许多参与防御和压力反应以及分生组织组织表达的响应元素。此外,GMFATB1A和GMFATB1B的编码序列比其他基因明显更长。它们的表达在生长过程中在大豆植物的不同器官中有所不同,GMFATB2A和GMFATB2B显示出较高的相对表达。此外,亚细胞定位分析表明,它们主要存在于叶绿体中。Overexpression of GmFATB1A , GmFATB1B , GmFATB2A and GmFATB2B in transgenic Arabidopsis thaliana plants increased the seed oil content by 10.3%, 12.5%, 7.5% and 8.4%, respectively, compared to that in the wild-type and led to signi fi cant increases in palmitic and stearic acid content.因此,这项研究增强了我们对大豆中FATB家族的理解,并为随后改善大豆质量提供了理论基础。
通过可编程核酸酶(包括成簇调控间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) (CRISPR/Cas9) 系统)进行的定向诱变已被广泛用于生成基因组编辑生物,包括开花植物。迄今为止,在生殖细胞或组织中特异性表达 Cas9 蛋白和向导 RNA (gRNA) 被认为是可遗传定向诱变最有效的基因组编辑方法之一。在本报告中,我们回顾了生殖细胞或组织的基因组编辑方法的最新进展,这些细胞或组织在将遗传物质传递给下一代方面发挥着作用,例如卵细胞、花粉粒、合子、未成熟合子胚和茎尖分生组织 (SAM)。 Cas9 蛋白在起始细胞中的特异性表达可有效诱导农杆菌介导的植物转化中的靶向诱变。此外,通过将 CRISPR/Cas9 成分直接递送到花粉粒、受精卵、胚胎细胞和 SAM 中,已成功建立基因组编辑,以生成基因组编辑的植物系。值得注意的是,通过递送 Cas9-gRNA 核糖核蛋白 (RNP) 进行的无 DNA 基因组编辑与任何有关转基因生物的立法问题无关。总之,生殖细胞或组织的基因组编辑方法不仅对植物生殖的基础研究具有巨大潜力,而且对分子植物育种的应用科学也具有巨大潜力。
独脚金内酯是一类植物激素,在植物发育、应激反应和与根际(微生物)生物的相互作用中发挥各种功能。虽然它们对营养发育的影响已被充分研究,但人们对其在生殖中的作用知之甚少。我们研究了基因和化学改造独脚金内酯水平对番茄 (Solanum lycopersicum L.) 开花时间和强度的影响,以及这种影响背后的分子机制。结果表明,无论是内源的还是外源的,地上部独脚金内酯水平都与开花时间呈反比,与花朵数量和叶片中成花素编码基因 SINGLE FLOWER TRUSS (SFT) 的转录水平呈正相关。转录本定量结合代谢物分析表明,独脚金内酯通过诱导叶片中 microRNA319 - LANCEOLATE 模块的激活来促进番茄开花。这反过来又降低了赤霉素含量并增加了 SFT 的转录。用独脚金内酯处理后,顶端分生组织中会诱导出几种其他花标记和发育进程的形态解剖特征,从而影响花的转变,更明显地影响花的发育。因此,独脚金内酯通过诱导花转变前后的 SFT 来促进分生组织的成熟和花的发育,而它们的作用在表达 miR319 抗性 LANCEOLATE 的植物中被阻断。我们的研究将独脚金内酯置于模型作物物种的开花调控网络的背景下。