通过同源定向修复 (HDR) 进行的基因组编辑 (GE) 可以最大程度地灵活地修改基因组。先前的基因打靶 (GT) 研究表明,将带有供体模板的 Cas9 或 Cas12a 表达盒通过基因枪递送到水稻愈伤组织中,可以使用 HDR 途径在靶位点进行精确替换或插入 (Li et al., 2016 , 2018 , 2019 ; Lu et al., 2020 )。其他研究小组还报告在玉米 (Svitashev et al., 2016 ) 和大麦 (Lawrenson et al., 2021 ) 中成功创建 GT 植物。然而,这些策略仅适用于适合细胞培养和再生的基因型。为了规避与细胞培养和再生相关的限制,我们最近开发了植物内粒子轰击 (iPB) 方法,该方法允许在小麦中进行基因型独立的基因组编辑 (Hamada 等人,2017 年;Liu 等人,2021 年)。iPB 方法利用茎尖分生组织 (SAM),其中包含注定在花发育过程中发育成生殖细胞的表皮下层 (L2) 细胞。成功将 Cas9 核糖核蛋白 (RNP) 递送到 SAM 可促进基因组编辑的发生,并可遗传给下一代 (Kumagai 等人,2022 年)。由于 SAM 具有细胞分裂活跃的特点,许多细胞处于 HDR 的先决条件 G2/M 阶段,我们假设可以通过 iPB 方法将设计的供体 DNA 与 RNP 一起递送到小麦 SAM 中,实现基于 HDR 的 GT(图 1a)。
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
抽象关键信息小麦转录因子BZIPC1与FT2相互作用,并影响Spikelet和每个峰值的晶粒数。我们确定了一个天然等位基因,对这两个经济上重要的特征具有积极影响。在小麦中的基因开花基因座T2(FT2)中的功能丧失突变和自然变异已被证明会影响每个峰值(SNS)的尖峰数。 然而,尽管其他类似FT的小麦蛋白与来自A组的含BZIP的转录因子相互作用,但FT2不与任何一个相互作用。 在这项研究中,我们将酵母2杂交筛选带有FT2作为诱饵,并从C-Group中鉴定出含BzipC1的基于BZIPC1的基因BZIP的转录因子。 在C组中,我们确定了四个进化枝,包括与不同的FT相互作用的小麦蛋白,例如像编码的蛋白一样。 BZIPC1和FT2表达在发育中的峰值中部分重叠,包括花序分生组织。 在BZIPC-A1和BZIPC-B1(BZIPC1)中的功能丧失突变在四倍体小麦中导致SNS的急剧减少,对标题日期的影响有限。 分析BZIPC-B1(TRAESCS5B02G444100)区域的自然变化区域显示,三种主要的单倍型(H1-H3),H1单倍型显示出比H2和H3单倍型的SNS明显更高,每个峰值的晶粒数明显更高,每个峰值的晶粒数明显更高。 H1单倍型的有利作用也得到了其从祖先培养的四倍体到现代四倍体和六比小麦品种的频率增加的支持。在小麦中的基因开花基因座T2(FT2)中的功能丧失突变和自然变异已被证明会影响每个峰值(SNS)的尖峰数。然而,尽管其他类似FT的小麦蛋白与来自A组的含BZIP的转录因子相互作用,但FT2不与任何一个相互作用。在这项研究中,我们将酵母2杂交筛选带有FT2作为诱饵,并从C-Group中鉴定出含BzipC1的基于BZIPC1的基因BZIP的转录因子。在C组中,我们确定了四个进化枝,包括与不同的FT相互作用的小麦蛋白,例如像编码的蛋白一样。BZIPC1和FT2表达在发育中的峰值中部分重叠,包括花序分生组织。在BZIPC-A1和BZIPC-B1(BZIPC1)中的功能丧失突变在四倍体小麦中导致SNS的急剧减少,对标题日期的影响有限。分析BZIPC-B1(TRAESCS5B02G444100)区域的自然变化区域显示,三种主要的单倍型(H1-H3),H1单倍型显示出比H2和H3单倍型的SNS明显更高,每个峰值的晶粒数明显更高,每个峰值的晶粒数明显更高。H1单倍型的有利作用也得到了其从祖先培养的四倍体到现代四倍体和六比小麦品种的频率增加的支持。我们开发了两个非同义SNP的标记,这些标记将H1单倍型中的BZIPC-B1B等位基因与所有其他单倍型中存在的祖先BZIPC-B1A等位基因区分开。这些诊断标记是加速在面食和面包小麦育种计划中的有利BZIPC-B1B等位基因部署的有用工具。
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
没有可选标记的转基因植物的再生可以促进性状堆叠产品的开发和商业化。已经开发了各种策略来消除可选标记以生产无标记的转基因植物。最广泛使用的无标记方法可能是基于农杆菌的2 T-DNA策略,其中利率基因(GOI)和可选标记基因从独立的T-DNA中传递(Darbani等,2007)。可选标记基因在随后的几代中脱离了GOI。然而,由于T-DNA共转化的不确定和GOI和可选标记基因T-DNA之间的高率,该2 T-DNA系统的效率远小于传统的1 T-DNA系统。相比之下,没有选择转换使用带有GOI的单个T-DNA,因此消除了删除可选标记插入物的需要,并有可能提供可行的替代标记系统。在这项研究中,我们报告了通过无需使用选择性剂的种子分生植物的农杆菌接种种植的转基因棉植物的成功再生。通过GUS组织化学测定,鉴定出推定的转基因植物的再生。通过GUS表达通过花粉粒,未成熟胚胎和T1植物的分离来确定转基因向后代的种系传播。通过南部分析进一步确认了结果。在此无选择系统中,无标记转换频率与当前的分生组织转换系统相似(0.2% - 0.7%)。讨论了进一步改进该系统的策略及其在改善棉花转化管道和开发无基因基因组编辑技术方面的意义。
在根尖分生组织(RAM)中,干细胞生态位(SCN)的维持对于适当的植物生长至关重要。过多的3(PLT3)最近被确定为该过程的关键调节剂,在该过程中,它与与Wuschel相关的同源物ox 5(Wox5)相互作用,以维持静态中心(QC)和柱状干细胞(CSC)。PLT3通过液态液相(LLP)形成核冷凝物,这是一个动态过程,其中生物分子响应各种刺激而聚集了。接受LLP的蛋白质通常包含本质上无序的区域(IDR),例如prion-likedomain(PRDS),这些区域具有构象的灵活性和多价性。这些蛋白质中的许多在调节植物的发育和环境反应中起关键作用。例如,以时钟相关的转录调节器早期开花3(ELF3),以其在开花,昼夜节律调节中的作用而闻名,并且在根中含有温度传感,其中包含两个PRDS,并经历了LLP。在这里,我们首次报告其在根scn维护中的作用。我们证明了Elf3在根scn中表达,它位于亚细胞冷凝水。在瞬态n。n。benthamiana实验中,这些冷凝物表现出液体样行为,并与核中的PLT3共定位。通过FRET-FLIM分析,我们发现Elf3和PLT3之间的相互作用,这取决于其LLP的行为,并且对温度敏感。此外,我们将植物色素相互作用因子(PIF)蛋白识别为ELF3的核班车,从而促进其募集到PLT3-核冷凝物中。因此,我们提出了一个模型,其中LLPS介导的ELF3,PLT3和PIF之间的相互作用可以代表一种快速,灵活的机制,以将环境信号整合到SCN维护中。
建立有效的植物再生系统是植物基因工程技术的关键先决条件。然而,再生率在基因型之间表现出很大的差异,并且基本的芽再生能力的关键因素在很大程度上难以捉摸。蓝莓叶外植体在富含细胞分裂素的培养基上培养的蓝莓叶植体没有明显的愈伤组织形成,表现出直接的射击器官,这有望加快遗传转化,同时最大程度地减少培养过程中的体细胞突变。这项研究的目的是阐明在Highbush蓝莓(vacinium corymbosum L.)中控制品种特异性芽再生潜力的分子和遗传决定因素。我们使用两种Highbush蓝莓基因型进行了比较转录组分析:“蓝色松饼”(“ BM”)显示出高再生速率(> 80%)和“ O'Neal”(“ ON”),其再生速率低(<10%)。发现揭示了许多与生长素相关基因的差异表达。值得注意的是,与“ ON”相比,“ BM”表现出更高的生长素信号基因表达。在拟南芥中涉及分生组织形成的转录因子的蓝莓直系同源物之间,芽再生的表达(VCESR)(VCESR),VCWUSCHEL(VCWUS)(VCWUS)和VCCUP形状的共叶叶叶2.1在“ BM”中相对于“ BM”的表现明显更高。生长素的外源应用促进了再生以及VCESR和VCWUS表达,而生长素生物合成的抑制产生了相反的作用。在“ BM”中的VCES过表达通过激活细胞分裂素和生长素相关基因的表达,在无植物激素条件下促进了芽的再生。这些发现为蓝莓再生的分子机制提供了新的见解,并对增强植物再生和转化技术具有实际意义。
摘要:蛋白质氨基酸脯氨酸在植物发育和应激反应中起着至关重要的作用,远远超过其在蛋白质合成中的作用。然而,脯氨酸这些额外功能的分子机制和相对重要性仍在研究中。有充分的证据表明,应激反应和发育过程都与脯氨酸的积累有关。在应激条件下,脯氨酸被认为赋予应激耐受性,而在生理条件下,它有助于发育过程,特别是在生殖阶段。由于脯氨酸作为相容性渗透调节剂和潜在活性氧 (ROS) 清除剂的特性,它的大部分有益作用历来被归因于其在植物中积累的物理化学后果。然而,新出现的证据表明脯氨酸代谢是这些有益作用的主要驱动因素。最近的报告表明,脯氨酸代谢除了支持生殖发育外,还可以通过控制根分生组织中的 ROS 积累和分布来调节根分生组织的大小。脯氨酸和 ROS 之间的动态相互作用凸显了植物恢复力和生存所必需的复杂调节网络。这种微调机制由分区脯氨酸代谢的促氧化和抗氧化特性所促成,可以调节氧化还原平衡和 ROS 稳态,可能解释了脯氨酸的许多多重作用。这篇综述以独特的方式整合了脯氨酸在 ROS 清除和信号传导中的双重作用的最新发现,提供了迄今为止发表的最新研究的最新概述,并提出了一种统一的机制,可以解释脯氨酸在植物发育和应激防御中的许多多重作用。通过关注脯氨酸和 ROS 之间的相互作用,我们旨在全面了解这一拟议机制,并强调其在提高作物对环境压力的恢复力方面的潜在应用。此外,我们还解决了当前理解上的差距,并提出了未来的研究方向,以进一步阐明脯氨酸在植物生物学中的复杂作用。
植物切开术在植物生物技术和基因工程中起关键作用,通过提供对植物组织的结构组织和功能专业化的见解。了解植物解剖学使研究人员能够操纵植物系统,以提高生产力,耐药性和适应能力。本手稿解释了植物切开术是如何成为植物生物技术和遗传工程发展的基础,重点是组织特异性的遗传修饰,结构适应和植物育种的创新。植物切开术揭示了植物系统的内部组织,包括根,茎,叶和生殖器官。每个组织皮肤,血管和地面都具有特定功能,这些功能是植物的生存和生长不可或缺的功能。例如,血管系统(木质部和韧皮部)是营养和水运输的核心,而表皮则充当保护屏障。通过研究这些结构,科学家可以识别靶组织的遗传修饰,以增强营养摄取,光合作用效率或病原体耐药性。了解植物解剖学是基因工程的关键。组织特异性启动子在特定的器官或细胞类型中启用靶向基因表达。例如,表皮中的遗传修饰可以通过改变角质层厚度或气孔密度来增强干旱耐受性。同样,操纵韧皮部细胞可以改善光合作用的易位,从而提高作物产量。转基因方法通常依赖于解剖学知识来确保外国基因的成功整合和表达。农杆菌介导的转化是一种基因工程中广泛使用的方法,需要精确靶向细胞主动分裂的分生组织组织。植物学研究为识别这些组织提供了路线图,从而促进了有效的遗传修饰。植物组织培养是植物生物技术的基石,深深地植根于植物切开术。从小组织样品中再生整个植物的能力取决于对细胞和组织结构的理解。例如,愈伤组织需要了解实质细胞的能力,而芽和根的分化
Picard, D. (2000)。通过与类固醇结合域融合实现蛋白质的翻译后调控。Methods Enzymol. 327 , 385-401。ER α HBD 融合在小鼠中的应用:Whitfield, J.、Littlewood, T.、Evan, GI 和 Soucek, L. (2015)。小鼠模型中的雌激素受体融合系统:可逆转换。Cold Spring Harb. Protoc. 2015 , 227-234。参考文献 1. Sablowski, RW 和 Meyerowitz, EM NO APICAL MERISTEM 的同源物是花同源基因 APETALA3/PISTILLATA 的直接靶标。Cell 92 , 93- 103 (1998)。 2. Thuerauf, DJ, Marcinko, M., Belmont, PJ 和 Glembotski, CC ATF6α 和 ATF6β 异构体特异性特征对内质网应激反应基因表达和细胞活力的影响。J. Biol. Chem. 282, 22865-22878 (2007)。3. Aoyama, T. 等人。拟南芥转录激活因子 Athb- 1 的异位表达改变了烟草叶细胞的命运。Plant Cell 7, 1773-1785 (1995)。4. Laumen, H., Nielsen, PJ 和 Wirth, T. BOB.1/OBF.1 辅激活因子对 B 细胞中八聚体依赖性转录至关重要。Eur. J. Immunol. 30, 458-469 (2000)。 5. Lu, J. 等人。用于转录激活和基因组编辑的多模式药物诱导 CRISPR/Cas9 装置。核酸研究。46,e25(2018)。6. Gomez-Ospina, N.、Tsuruta, F.、Barreto-Chang, O.、Hu, L. 和 Dolmetsch, R. L 型电压门控钙通道 ca(v)1.2 的 C 端编码转录因子。细胞 127,591-606(2006)。7. Umek, RM、Friedman, AD 和 McKnight, SL CCAAT 增强子结合蛋白:分化开关的组成部分。科学 251,288-292(1991)。 8. Müller, C., Kowenz-Leutz, E., Grieser-Ade, S., Graf, T. & Leutz, A. NF-M(鸡 C/EBP beta)诱导造血祖细胞系嗜酸性分化和凋亡。EMBO J. 14 , 6127-6135 (1995)。9. McDonald, MJ & Rosbash, M. 果蝇昼夜节律基因表达的微阵列分析和组织。Cell 107 , 567-578 (2001)。10. Simon, R., Igeno, MI & Coupland, G. 拟南芥花分生组织身份基因的激活。Nature 384 , 59-62 (1996)。 11. Picard, D., Salser, SJ & Yamamoto, KR 糖皮质激素受体类固醇结合域内可移动且可调节的失活功能。Cell 54 , 1073-1080 (1988)。12. Spitkovsky, D. 等人。腺病毒 E1A 在具有 E1A 依赖性条件性增殖的细胞系中对细胞周期蛋白基因表达的调节。J. Virol. 68 , 2206-2214 (1994)。13. Vigo, E. 等人。CDC25A 磷酸酶是 E2F 的靶标,是 E2F 有效诱导的 S 期所必需的。Mol. Cell. Biol. 19 , 6379-6395 (1999)。 14.Jones, ME, Kondo, M. & Zhuang, Y. A tamoxifen inducible knock-in allele for investigation of E2A function. BMC Dev. Biol. 9 , 51 (2009). 15.Zhao, B. et al. RNAs induced by Epstein-Barr virus Nuclear Antigen 2 in Lymphoblastoid cell lines. Proc. Natl. Acad. Sci. USA 103 , 1900-1905 (2006). 16. Maruo,S. 等人。Epstein–Barr 病毒核蛋白 EBNA3C 是淋巴母细胞细胞周期进程和生长维持所必需的。美国国家科学院院刊 103,19500-19505(2006 年)。