黑鲁希奥(A)和墨西哥湾流(B)是在大西洋和太平洋中发现的强烈西部边界电流(WBC),这些电流及其扩展的可变性对气候系统产生了重大影响。diabaté等人(2021)强调,分离点上游的近海海平面与WBC扩展中的子午偏移一致。
皮托管:提供普朗特皮托管来测量气流速度。翼型:翼型是二维体,流线型,因此分离仅发生在体部的极端范围内。翼型模型符合 NACA 0018 轴向弦长 16 厘米和 29 厘米,具有 12 个参数攻丝,用于压力分布研究。分离点靠近后缘,产生的工作宽度较小,从而提供低阻力。阻力系数:由于体后方出现尾流,并且流动与上表面分离,因此阻力系数在低角度时较小。翼型由干燥的柚木制成,可长期使用。
为了通过稳定大气中的二氧化碳水平来避免全球变暖,功能性多孔材料领域正在进行大量研究活动。寻找高效、高性能的物理吸附剂来捕获和分离点源中的二氧化碳以及储存更清洁的气体燃料(如氢气和/或甲烷)被认为是一项重大挑战。在这项研究中(Soumya Mukherjee 等人,材料化学 A 杂志,7 (3),2019: 1055-1068),在典型的离子热条件下合成了一组新型的 1,2,3-三唑功能化共价三嗪骨架 (TzCTF),利用两个合理设计的 C3 对称三唑取代芳香三腈构件类似物,即 Tz-FCN 和 Tz-HCN,分别具有氟化和非氟化的苯基核心。获得的新型TzCTF材料
其唇缘。传递应力与唇缘张开之间的关系是材料的一种特性,称为软化曲线。直接测量该函数极其困难,因此,为了确定它,采用了间接程序。它们包括将真实曲线近似为依赖于多个参数的分析曲线,并通过实验确定这些参数[5,6]。最显着的简化模型之一是双线性曲线,由两个直线段组成,取决于三个参数:粘结阻力、断裂能和两个双线性段之间的分离点坐标。该曲线可以可靠地预测混凝土行为[6,13]。在[14]中可以找到一种不同的方法,其中软化曲线由一组材料参数参数化,这些参数确定为最小化实验结果和数值结果之间的差异。在当前工作中,应用迭代算法,该算法