遥感是通过技术设备获取有关所需位置的信息的过程,我们将我们从一定距离放置在选定位置,并在空间,光谱,辐射测量和时间分辨率中分析,显示和监视它,并通过任何距离进行测量,而无需进行任何距离[1]。遥感用于制图,水文学,地质,林业,农业,国防,安全和空间的领域。有具有数据集的平台,例如前哨,Landsat,Maxar,Planet,UC Merced,EuroSat,patternnet,Spacenet和Google Earth Engine。在图像处理和数据挖掘技术中进行了改进,以解决提供大数据和分析数据[2]的问题,而SATLASPRETRAIN [3]数据集是已使用的大数据集之一。
CSUSB Scholarworks研究生办公室将该项目带给您免费和公开访问。已被CSUSB Scholarworks的授权管理人所接受,将其纳入电子论文,项目和论文。有关更多信息,请联系Scholarworks@csusb.edu。
恶意软件是任何可能对计算机系统造成损害的软件。恶意软件构成了对信息系统的重大威胁,这些威胁多年来遭受了几次毁灭性攻击的影响。传统的Antimalware软件由于多种恶意软件(例如多态性)的逃避技术提供了有限的效率,以防止恶意软件删除。Antimalware只能删除其签名的恶意软件,并且对零日间攻击无效和无助。几项研究工作利用受监督和无监督的学习算法成功地检测和对恶意软件进行了分类,但是在相关研究工作中占据了误报和虚假否定,以及利用不足的数据集,这些数据集未能捕获尽可能多的恶意软件家庭来概括地发现发现。这项研究利用机器学习来检测和对恶意软件进行使用机器学习技术,包括特征选择技术以及超参数优化。主成分分析用于治疗由于用于容纳大量恶意软件系列的大型数据集而导致的维度诅咒。支持向量机,K最近的邻居和决策树用于使用两个数据集进行性能比较的模型。通过使用网格搜索和K-折叠验证并调用最佳参数以实现最佳性能,以获得最佳性能,以获得最佳的检测准确性和低的检测和低底片,从而提高了模型的性能,从而增强了所选分类器的超参数以呼吁最佳性能。使用混乱矩阵,精度,召回和F1评分评估了研究模型。准确度为99%,98.64和100%,与K最近的邻居,决策树和支持向量机与CICMALMEM数据集分别具有相等数量的恶意软件和良性文件,与K最近的邻居达到了零误报,而准确性的准确性为97.7%,70%和96%的数据,而Datation却在k中相得益彰,而DATAIT则相应地数据。与K最近的邻居一起,还可以实现38的最低误报数量。该模型接受了默认超标仪的培训,以及通过调整超参数来获得的表演来获得的超级参数,并且发现优化超标仪和功能选择技术的优化能力并不一定能够与DataIns的表现更好,并且可以通过良好的数量进行良好的数量,并提供了良好的数量。未来的作品包括使用深度学习和集合学习作为分类器以及其他超参数优化技术,例如贝叶斯优化和随机搜索,其他具有较高恶意软件系列的数据集也可以用于培训。
摘要 - 大多数计算机视觉算法无法在图像中找到高阶(摘要)模式,因此与人侧向视觉不同,对抗攻击并不强大。深度学习以均匀的方式考虑每个输入像素,因此通常不连接“局部敏感的哈希表”的不同部分,这意味着没有发现高阶模式。因此,这些系统对嘈杂,无关紧要和冗余数据并不强大,从而导致错误的预测错误。相反,脊椎动物大脑通过侧向化提供异质知识表示,从而在不同级别的抽象级别实现模块化学习。这项工作旨在验证侧向方法的有效性,可伸缩性和鲁棒性,这些方法涉及包含嘈杂,无关紧要和冗余数据的现实世界问题。多类(200类)图像分类的实验结果表明,新型系统有效地学习了多个抽象级别的知识表示,从而使其比其他最先进的技术更强大。至关重要的是,新型侧向系统的表现优于所有最新的基于深度学习的系统,用于分类正常和对抗图像的分类。05% - 41。02%和1。36%-49。分别为22%。的发现证明了异质和侧向学习对计算机视觉应用的价值。
摘要 - 在2型糖尿病的分类中梯度增强算法的应用在提高侵略性的准确性方面显示出显着的结果。这项研究教授了各种研究,这些研究使用梯度提升来通过使用医疗数据集来预测2型糖尿病。结果表明,该算法能够达到-82%,比其他方法(例如随机森林和幼稚的贝叶斯)更好。通过确定有助于糖尿病发展的重要特征,梯度不仅提高了准确性,而且还为预防和管理这种疾病提供了宝贵的见解。这项研究的结果证明了机器学习在糖尿病早期诊断中的潜力,这对于公共卫生管理很重要。
摘要 — 特征选择在机器学习中非常重要,它可用于降低分类、排名和预测问题的维数。删除冗余和噪声特征可以提高训练模型的准确性和可扩展性。但是,特征选择是一项计算量大的任务,其解决方案空间会以组合方式增长。在这项工作中,我们特别考虑了二次特征选择问题,该问题可以用量子近似优化算法 (QAOA) 来解决,该算法已用于组合优化。首先,我们用 QUBO 公式表示特征选择问题,然后将其映射到 Ising 自旋哈密顿量。然后我们应用 QAOA 来找到该哈密顿量的基态,这对应于特征的最佳选择。在我们的实验中,我们考虑了七个不同的真实世界数据集,维数高达 21,并在量子模拟器和 7 量子比特 IBM (ibm–perth) 量子计算机上(对于小型数据集)运行 QAOA。我们使用选定的特征集来训练分类模型并评估其准确性。我们的分析表明,使用 QAOA 解决特征选择问题是可能的,并且目前可用的量子设备可以得到有效利用。未来的研究可以测试更广泛的分类模型,并通过探索性能更好的优化器来提高 QAOA 的有效性。索引术语 —QAOA、特征选择、QUBO、分类
摘要 — 神经胶质瘤是成人常见的脑肿瘤类型,源自神经胶质细胞。尽管医学图像分析和神经胶质瘤研究取得了进展,但准确诊断仍然是一个挑战。神经胶质瘤通常可分为高级别(HG)和低级别(LG)。神经胶质瘤的准确分类有助于评估病情进展和选择治疗策略。虽然使用卷积神经网络(CNN)进行医学图像分类已取得显著成功,但对于 CNN 来说,准确对 3D 医学图像进行分类仍然是一项艰巨的任务。主要限制之一是 CNN 难以在 3D 体积分类中优化。在当前的工作中,我们通过引入 CNN 与长短期记忆(LSTM)网络的级联来应对这一挑战,以将 3D 脑肿瘤 MR 图像分类为 HG 和 LG 神经胶质瘤。从预先训练的 VGG-16 中提取特征并将其输入到 LSTM 网络中,以学习高级特征表示,从而将 3D 脑肿瘤体积分类为 HG 和 LG 胶质瘤。结果表明,与从 AlexNet 和 ResNet 中提取的特征相比,从 VGG-16 中提取的特征具有更好的分类准确率。
-背景。自闭症谱系障碍 (ASD) 在不同程度上影响大脑连接。尽管如此,由于 ASD 的异质性,使用磁共振成像 (MRI) 非侵入性地区分此类影响对于机器学习诊断框架来说仍然非常具有挑战性。到目前为止,现有的网络神经科学工作主要集中在功能性(源自功能性 MRI)和结构性(源自扩散 MRI)大脑连接上,这可能无法捕捉大脑区域之间的相关形态变化。事实上,使用源自传统 T1 加权 MRI 的形态学大脑网络进行 ASD 诊断的机器学习 (ML) 研究非常稀少。-新方法。为了填补这一空白,我们利用众包通过组织 Kaggle 竞赛来构建一个用于神经系统疾病诊断的机器学习管道池,并使用源自 T1 加权 MRI 的皮质形态学网络将其应用于 ASD 诊断。-结果。比赛期间,参赛者将获得一个训练数据集,并且只能在公开测试数据上检查自己的表现。最终评估基于准确度、敏感度和特异性指标,在公开和隐藏测试数据集上进行。团队分别使用每个绩效指标进行排名,最终排名根据所有排名的平均值确定。排名第一的团队
奥维耶多大学哲学系 奥维耶多人文校园,33011 西班牙 dalvar@uniovi.es 摘要:在本文中,我将根据类比的内部结构对其进行分类。选择该分类中使用的标准首先需要讨论任何类比的最小组成部分。据此,我将讨论类比与相似性之间以及类比与“同源”之间的区别,并强调操作和程序类比的重要性。最后,我将对不同类型的类比进行分类,这有助于进一步理解类比一般理念的某些调制之间的差异,例如原型、原型、模型、模拟、寓言、范式、经典、地图、思想实验、神话、乌托邦、反乌托邦和寓言。
摘要 – 精确和新颖的脑癌 MR 图像处理在决策和患者治疗决策中发挥着重要作用。MR 图像处理中的关键挑战是 X 射线设备捕获的低级视觉数据与人类评估者看到的高级数据之间的语义差距。传统的系统控制模型仅适用于低级或高级技能,使用一些手工定制的元素来缩小这个差距,并且需要精确的元素提取和分类方法。深度学习的最新进展表明,深度学习取得了巨大进步,并且深度学习卷积神经网络 (CNN) 已在图像分类项目中占据主导地位。深度学习对于特征描述非常有用,它可以完整地描述低级和高级数据,并将元素提取和分类部分植入自我意识中,但总体上需要巨大的训练数据集。对于大多数深度学习情况,训练数据集很小,因此,在小数据集上练习深度学习和训练 CNN 是一项艰巨的任务。针对这一问题,我们使用了预训练的深度 CNN 模型。我们的方法更稳定,因为它不使用任何精心构建的技能,只需要很少的预处理,并且可以在 5 次重叠移动验证下获得 95.51% 的平均精度。我们不仅使用传统的机器学习来测试我们的结果,而且还使用 CNN 的深度学习技术来测试我们的结果。试验结果表明,我们提出的方法在 MRI 数据集上超越了现代类别