近年来,由于存储容量的增加、网络架构的改进以及数码相机(尤其是手机)的普及,视频在许多应用中变得越来越流行。如今,人们可以通过电视和互联网观看大量视频。观众可以选择的视频数量如此之多,以至于人类不可能从所有视频中找出感兴趣的视频。观众用来缩小选择范围的一种方法是寻找特定类别或类型的视频。由于需要分类的视频数量巨大,因此人们已经开始研究自动对视频进行分类、视频分类和分析。因此,有必要有一个系统来为某个视频或不同的视频生成相关标签
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
- 使用相关矩阵并分析每个功能以选择合适的培训。- 选择最合适的训练参数以提高准确性并避免过度插入/拟合。- 绘制结果并与真实数据进行比较。
生物多样性在维持生态平衡、提供食物和支持全球生计方面发挥着至关重要的作用。印度是生物多样性极其丰富的国家之一,拥有大量特有物种。水生生物多样性,尤其是渔业资源,至关重要,因为它提供富含蛋白质的食物、维持生计并产生外汇。然而,由于人为因素导致的生物多样性下降令人担忧。综合分类学结合了传统方法和分子方法,彻底改变了分类学领域。基于形态特征的传统分类学历来支撑着我们对物种多样性的理解。然而,它有时会遇到表型可塑性等问题,即生物体的外观在不同环境条件下差异很大。过去三十年发展起来的 DNA 条形码等分子技术弥补了传统方法的不足,解决了分类模糊性问题,揭示了隐秘物种,揭示了形态学方法可能遗漏的进化关系。尽管印度拥有多样化的农业气候区,并且是一个生物多样性大国,但其生物多样性中只有不到一半得到了分子水平的表征。新一代测序等先进方法现在可以直接从环境样本中识别物种,增强了我们全面监测生物多样性的能力。培训计划“综合分类学和系统发育学”专门为让研究人员了解传统和基于 DNA 序列的物种划界技术的强大组合而设计。这种综合方法对于准确编目印度丰富的生物多样性和实施有效的保护战略至关重要。
Deskripsi Lengkap: https://lib.ui.ac.id/detail?id=9999920568055&lokasi=lokal ------------------------------------------------------------------------------------------ Abstrak Pandemi COVID-19 mendorong adanya transformasi kesehatan, terutama dalam Praktik Kedokteran Gigi。对传播风险的反应,使公众朝着远程医疗服务,尤其是远程访问术。这种现象在正畸中创造了一个新的范式,鼓励了Teleorthodontic的发展。正畸领域中的机器学习技术支持为早期诊断和增加正畸服务的可及性提供了创新的解决方案。这项研究将比较3个计算机视觉模型,即有效网络,Mobilenet和Shufflenet,并伴随着添加表格模型,即TabNet。该计算机视觉模型的实施旨在为正畸患者提供初始分析,并将在Lime的帮助下使用F1得分指标和专家解释性评估。基于这项研究,发现计算机视觉洗牌模型具有最佳的平均F1分数值,其次是EfficityNet和Mobilenet。价值的差异范围从有效T和洗牌片之间的1-5%范围范围,但是Mobilenet和Shufflenet的差异范围为3-8%。此外,与不使用TabNet的模型相比,在框架中添加TabNet在框架中的平均F1得分值增加了2.7%至5%。....... COVID-19-大流行驱动了健康转变,尤其是在牙科实践中。对传播风险的反应导致公众进入远程医疗服务,尤其是远程医疗服务。这种现象在正畸方面创造了一个新的范式,鼓励了电视牙齿的发展。正畸技术中机器学习技术的支持提供了用于早期诊断和增加正畸服务的创新解决方案。本研究将比较3种计算机视觉模型,这些模型是有效网络,Mobilenet和Shufflenet,并伴随着添加表格模型,即TabNet。该计算机视觉模型的实施旨在为正畸患者提供初始分析,并将在Lime的帮助下使用F1评分指标和专家的解释性进行评估。这项研究发现,洗牌计算机视觉模型具有最佳的平均F1得分,其次是有效网络,最后是Mobilenet。值差异在有效网和洗牌片之间的1-5%之间,但是Mobilenet和Shufflenet的差异扩大,范围在3-8%之间。此外,与不使用TABNET的模型相比,将TABNET添加到框架中的F1得分平均增加2.7%至5%。
对高度多样化的植物分类单元的保护和研究可能是一个巨大的挑战,因为具有潜在复杂关系的不可管理的物种通常会导致物种鉴定困难。cyrtandra举例说明了这些挑战。CA缺乏身份资源。170种伯恩斯·西拉德拉(Bornean Cyrtandra)的物种使许多标本未识别,从而减慢了该地区的研究工作。本项目通过使用在线生物多样性数据管理平台XPER3(https://app.xper.fr/)来描述为高度多样化的分类单元创建识别资源的工作流程来解决这一问题。该密钥现已发布并可以在线自由访问。在线多功能分类键通过将可访问的用户友好平台与动态分类研究工具相结合,为生物多样性研究提供了有希望的工具,使其特别适合于解决高度多样化的分类学组。
建议依维莫司的治疗药物监测(TDM),以防止与服药不足有关的排斥风险,并最大程度地减少与上层面暴露有关的毒性作用[1]。可以使用两种主要方法进行此监测:具有基于质谱的分析检测的色谱程序,这些分析检测是对母体特异的,并且使用特定的抗体 - 抗原反应进行免疫测定,这些反应对与药物代谢物的交叉反应性敏感[2]。然而,从临床角度来看,测定之间的偏差可能会使人混淆,并导致调整依维莫司剂量的错误。国际治疗药物监测和临床毒理学免疫抑制药物科学委员会建议在理论值为1.0的10%以内的线性回归坡度,而线性回归截距则在零以截然不同的情况下截然不同[3]。