摘要冬季油菜的两个突变体(甘蓝纳普斯L. var。oleifera)通过化学诱变(HOR3-M10453和HOR4-M10464)培养种子中含有含油酸的量。突变植物的整体性能远低于野生型品种。具有高收益的双低(“ 00”)品种和具有有价值的农艺性状的繁殖品种的多个回合,然后需要选择高油酸基因型,以获得新的“ 00”种类的新“ 00”品种,具有高油酸含量的种子中的高油酸含量。要执行此类选择,使用了特定的裂解扩增的多态性序列(CAPS)标记。该标记旨在检测去饱和酶基因BNAA.FAD2中两个相关点突变的存在,并且先前已对其进行了描述和专利。使用FSP BI限制酶消化了特定的聚合酶链反应产物(732 bp),该酶识别5'-C↓TAG -3'序列,这是两个突变等位基因共有的,从而对这些等位基因特异性产生带模式。重新设计了该专利中提出的方法,调整为特定的实验室条件并进行了彻底的测试。测试了不同的DNA提取方案以优化过程。CAPS方法的两个变体(带有和不使用放大产品的净化)被认为选择最佳选择。此外,还测试了研究标记检测BNAA.FAD2基因座中杂合性的能力。最后,我们还提供了一些在繁殖计划中使用标记辅助选择(MAS)中使用新帽标记的示例。建议使用CAPS标记的DNA提取的标准CTAB方法和简化的两步(放大/消化)程序。标记物被发现可用于检测研究的BNAA.FAD2去饱和酶基因的两个突变等位基因,并有可能确保育种者的霍尔线纯度。然而,还表明它无法检测到任何其他揭示的等位基因或基因在油酸水平的调节中起作用。
摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
图1:对称PRDM9结合如何促进染色体配对的模型。在特定靶基序的结合DNA时,PRDM9(橙色椭圆形)将DNA段接近染色体轴。PRDM9绑定的某些站点可能会经历DSB(红色星星)。DSB的切除会生成一个单链端,该端将搜索一个补充序列,以用作修复模板。在对称绑定prDM9的情况下(即在两个同源物上,左侧的情况),假设同源搜索仅限于轴区域,则更直接访问了同源物的两个姐妹染色单体所提供的模板,从而促进同源性搜索并与同源物配对。然后可以将断裂作为CO或NCO事件修复,在这两种情况下,都可以在破裂的位点实现基因转换。在不对称的PRDM9结合(右侧显示的情况)的情况下,同源物不太直接访问,从而阻止了有效的同源物参与。一旦同源物已突触(这要归功于其他DSB,都在同一对染色体上的其他地方的其他位置上出现的其他DSB,稍后将进行损坏的位点。 在与DSB相对应的位置上具有不活动的结合位点的情况下,NCO将有效地实现偏见的基因转换,而有利于无效版本。稍后将进行损坏的位点。在与DSB相对应的位置上具有不活动的结合位点的情况下,NCO将有效地实现偏见的基因转换,而有利于无效版本。
2化学系软件化学,赫尔辛基大学赫尔辛基科学学院,赫尔辛基大学,PB55,PB55,芬兰赫尔辛基
I am 1 , Vincent Francis 1 , Sheng-Jia Lin 2 , Flare Kharfallah 1 , Vladimir Forv 1 1 , Maximamir Fun 1 , Chanshua Han 1 , Chanshua Han 1 , the Marine 1 , the Marine 1 , the Marine 1 , the Marine 1 , the Macink 1 , Armin Bally 1 , Armin Bayi 1 , Armin Bayi 1 , Armin Bayi 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally 1 , Armin Bally. Al-Chater 3,Fowzan S. Alkuraa 4,Argyriu 5的Loukhas,Meisam Babaho 6,7,Beahlo,Bakhshood Bakhshood 8,Basshodeh 9,Basshodeh 9,Laura Bar 9,Laura Bar 9,Laura Bar 9,Laura Bar 9,Laura Bar 9,Bastus 12 ,Dominique Braun 14,Rebecca Buchett 13,Maura Buttta 15,Marima Cadieux-Dion 16,Daniel Calame 17-19,Daniel 17-19,Daniel 20,Daniel 20,Donna Cugan 20,Stephany Eflonee 21,Stephany Eflone,Stephany Eflon 24,Tawfiq Froukh 25,Harnder K. Gill 26,约瑟夫27,28,Laura Gongel 14,Elaca Gogott 14,Elaciah S.-Y.goh 21,Vykuntarau K Gowda 29,Tobias B. Haack 13,5月O. Hashem 4,Stefan Hauser 30:31,Trevor L. Hoffman 2,26,Ehsan G 42,44,Ehsan g 42,44,David Murphy 22,David Nyais Nyaga 22,Denis Nyaga tros torsenter torsenter torse tories 17:19,lynetter tor av av av av av av。 1,Sear Alves 53,Varshney 2 2 2 2 2 2 2 2 2 2 2 2,David A. Rudko 1,Peter S. McPherson
细胞毒性药物会在细胞周期的各个阶段破坏细胞复制。因此,它们对活跃且快速分裂的细胞的影响更为明显。这些细胞包括癌细胞和一些同样快速分裂的人体正常细胞,如皮肤、毛发和口腔和胃肠道 (GI) 内壁的粘膜细胞。对人体正常细胞的这种损害是细胞毒性药物引起副作用的机制之一。