摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
自从Boveri描述并命名了100多年前[1]以来,Centro-某些(命名是因为它位于牢房的中心),因此其起伏不定。Boveri在早期已经进行了许多有趣的观察,包括中心体的行为似乎是细胞分裂的核心(例如它组织了细胞分裂设备,在癌细胞中是异常的)[2,3],以其名称持有效果。然后,近年来发生了曲折:发现中心体对于细胞分裂[4,5]是可分配的,并且发现整个动物(Fly)在没有功能性的centro-骨[6,7]中发展。尽管有这些曲折,但大量证据支持了中心体在组织微管和纤毛的能力[8,9]。的确,中心体数量和功能缺陷与包括纤毛病和癌症在内的严重人类疾病有关[10]。一个新兴区域可能发挥关键功能的新兴区域是不对称的细胞分裂。通过相对于命运决定因素的细胞极化而实现了不对称的细胞分裂,并与纺锤体取向相结合[11-13]。在相间和有丝分裂期间作为细胞中的主要微管组织中心(MTOC),中心体可以对细胞极性和纺锤体方向产生重大影响。中心体是固有的不对称的,一个中心体总是比另一个年龄更大(母亲中心体)(女儿中心体)。母亲和女儿的MTOC活动通常有所不同(见下文)。值得注意的是,据报道,许多干细胞类型表现出母亲或女儿中心体的刻板印象遗传,导致人们猜测中心体可能通过细胞极化控制不对称的细胞分裂,并可能作为可能影响细胞命运的关键信息的载体。使用这种“以中心体为中心”的观点,我们总结了在发育背景下,特别是在不对称干细胞分裂的背景下,了解中心体不对称的最新进展。
摘要冬季油菜的两个突变体(甘蓝纳普斯L. var。oleifera)通过化学诱变(HOR3-M10453和HOR4-M10464)培养种子中含有含油酸的量。突变植物的整体性能远低于野生型品种。具有高收益的双低(“ 00”)品种和具有有价值的农艺性状的繁殖品种的多个回合,然后需要选择高油酸基因型,以获得新的“ 00”种类的新“ 00”品种,具有高油酸含量的种子中的高油酸含量。要执行此类选择,使用了特定的裂解扩增的多态性序列(CAPS)标记。该标记旨在检测去饱和酶基因BNAA.FAD2中两个相关点突变的存在,并且先前已对其进行了描述和专利。使用FSP BI限制酶消化了特定的聚合酶链反应产物(732 bp),该酶识别5'-C↓TAG -3'序列,这是两个突变等位基因共有的,从而对这些等位基因特异性产生带模式。重新设计了该专利中提出的方法,调整为特定的实验室条件并进行了彻底的测试。测试了不同的DNA提取方案以优化过程。CAPS方法的两个变体(带有和不使用放大产品的净化)被认为选择最佳选择。此外,还测试了研究标记检测BNAA.FAD2基因座中杂合性的能力。最后,我们还提供了一些在繁殖计划中使用标记辅助选择(MAS)中使用新帽标记的示例。建议使用CAPS标记的DNA提取的标准CTAB方法和简化的两步(放大/消化)程序。标记物被发现可用于检测研究的BNAA.FAD2去饱和酶基因的两个突变等位基因,并有可能确保育种者的霍尔线纯度。然而,还表明它无法检测到任何其他揭示的等位基因或基因在油酸水平的调节中起作用。
(b)中心体是细胞中产生微管的区域。在动物细胞中心体内,有一对称为中心元的小细胞器。在动物细胞分裂期间,中心体划分和中心元素复制(制作新副本),而其凝结形式的每种染色体都由沿着长度的某个点结合的两个染色单体组成。此依恋点称为Centromere。
欧盟的大部分成员国都拥有干预经济所需的资源,这引发了人们的担忧,即财力最雄厚的国家可能在欧盟单一市场中获得不公平的优势。新冠肺炎危机非但没有引发相互保护,反而似乎为2008年金融危机后的同样错误铺平了道路。欧洲货币联盟(EMU)解体的离心力似乎已经得到化解,尽管至少目前只是部分化解,而且是在极端情况下。然而,联盟的生存不仅取决于应对疫情造成的严重金融问题,还意味着解决导致其成员国之间分歧加大的长期结构性问题。正如默克尔总理自己所承认的那样,“危机后只让德国独自强大对任何人都没有好处”。1 融合对于使联盟建立在更稳固的基础上以确保其长期可持续性至关重要。为了实现这一目标,应该实施哪些政策和改革?这些政策和改革在经济和政治上是否可行?为了回答这些问题,我们将简要回顾核心和标准普尔之间差距扩大的制度和结构性原因,并阐明三个重大事件:货币联盟的建立、2008 年金融危机和新冠疫情冲击。
采用密度泛函理论的第一性原理计算,表征了浓度 x = 0. 25、0.5 和 0.75 时 Ca 1-x Cr x O 化合物的结构性质、电子结构和由 Cr 杂质引起的铁磁性。通过声子谱计算获得动态稳定性。使用 Wu-Cohen 广义梯度近似计算结构参数,而电子和磁性则通过精确的 Tran-Blaha 修正的 Becke-Johnson 交换势确定。研究了晶体场、直接和间接交换分裂以确定铁磁态配置的起源和稳定性。Ca 1-x Cr x O 系统具有右半金属性,这通过 100% 的自旋极化和总磁矩的整数值得到验证。 Ca 0.75 Cr 0.25 O、Ca 0.5 Cr 0.5 O 和 Ca 0.25 Cr 0.75 O 是半金属铁磁体,其翻转间隙分别为 1.495、0.888 和 0.218 eV。因此,Ca 1-x Cr x O 材料是未来半导体自旋电子学中自旋注入可能应用的合适候选材料。
在最简单的观点中,细胞 - 超支或 - 内部命运决定因素与纺锤体取向相结合应足以解释不对称的干细胞分裂:也就是说,如果干细胞识别率的主调节器或分化的主调控因素在干细胞中占极性在干细胞中的两极分化,并且固定在某种程度上,跨度不仅可以通过一种依据来构成一个do依的依据。非对称干细胞分裂(图1)。反之亦然,如果建立细胞外环境,以使纺锤体取向将两个子细胞放置在不同的环境中,这决定了干细胞的身份或分化,则细胞不需要固有的命运决定因素。然而,最近的研究阐明了复杂机制的重要性,这些机制调节和增强了细胞不对称的细胞 - 超支和intrinsic不对称,以在干细胞分裂后达到双极结局。这种复杂的机制可以通过解决上述不对称分裂的“简单观点”固有的问题来实现不对称的划分。例如,方向的纺锤可以将细胞仅彼此放置一个细胞直径,因此将两个子细胞彼此隔开。组织如何确保将这两个子细胞放置在不同的信号环境中?在这篇综述中,我们总结了不对称细胞分裂的关键方面,特别关注这些和其他新兴机制,这些机制加强并确保了干细胞分裂的不对称结果。