• AAV 是一种小型(4.7 Kb)、单链、非致病性 DNA 病毒 • 可传导分裂细胞和非分裂细胞 • 单次给药后可进行长期传导 • 不同的 AAV 对不同物种的各种组织和器官表现出不同的趋向性
核苷酸的细胞池(ATP以外)很小,大约1%或以下是合成细胞DNA所需的量。细胞必须在核酸合成过程中继续合成核苷酸,在某些情况下,核苷酸合成可能会限制DNA复制和转录的速率。由于这些过程在分裂细胞中的重要性,抑制核苷酸合成的药物在医学中变得尤为重要。
RNA 引导的 CRISPR-Cas 酶因其功效、灵活性和易用性而被广泛用于基因组编辑 [已在其他地方进行综述 (1, 2)]。虽然 Cas9 等 CRISPR 蛋白已经在临床试验中显示出良好的前景,但对人类基因组造成永久性改变的现实意味着安全性至关重要。在基因组层面,Cas9 的特异性已通过预测脱靶位点的方法 (3, 4) 和分子工程来产生高保真度蛋白质 (5) 进行了优化。然而,一项将提高基因组编辑的实用性和安全性的关键发展是能够将 CRISPR-Cas 基因组编辑机制专门递送到患者体内所需的细胞类型、组织或器官。对于许多遗传疾病,只有一小部分细胞或特定器官表现出疾病的表型迹象,因此将成为基因组编辑的预期目标。对非预期细胞或器官进行基因组编辑可能会增加意外治疗结果的风险,此外还会因更高的剂量要求而增加制造成本。目前,CRISPR-Cas 基因组编辑器的靶向递送仍然是成功实现基因组编辑临床转化的重要未满足需求。病毒载体缺乏其天然基因组和复制能力,是基因治疗和最近的 CRISPR-Cas 基因组编辑的一种有吸引力的递送策略[在其他地方进行了综述 (6)]。最广泛使用的病毒载体是逆转录病毒和腺相关病毒 (AAV) (7, 8)。慢病毒载体是逆转录病毒的一个亚型,在基因组整合后表达较大的转基因 (~ 10 kb),而 AAV 表达较小的转基因 (~ 4.7 kb),来自长寿命的附加体;这两种病毒载体都能够转导分裂细胞和非分裂细胞。假型慢病毒载体 (9)、新 AAV 趋向性工程 (10) 和组织特异性启动子使用的进展使得这些技术能够实现细胞特异性递送。然而,病毒递送也引入了
RNA 引导的 CRISPR-Cas 酶因其功效、灵活性和易用性而被广泛用于基因组编辑 [已在其他地方进行综述 (1, 2)]。虽然 Cas9 等 CRISPR 蛋白已经在临床试验中显示出良好的前景,但对人类基因组造成永久性改变的现实意味着安全性至关重要。在基因组层面,Cas9 的特异性已通过预测脱靶位点的方法 (3, 4) 和分子工程来产生高保真度蛋白质 (5) 进行了优化。然而,一项将提高基因组编辑的实用性和安全性的关键发展是能够将 CRISPR-Cas 基因组编辑机制专门递送到患者体内所需的细胞类型、组织或器官。对于许多遗传疾病,只有一小部分细胞或特定器官表现出疾病的表型迹象,因此将成为基因组编辑的预期目标。对非预期细胞或器官进行基因组编辑可能会增加意外治疗结果的风险,此外还会因更高的剂量要求而增加制造成本。目前,CRISPR-Cas 基因组编辑器的靶向递送仍然是成功实现基因组编辑临床转化的重要未满足需求。病毒载体缺乏其天然基因组和复制能力,是基因治疗和最近的 CRISPR-Cas 基因组编辑的一种有吸引力的递送策略[在其他地方进行了综述 (6)]。最广泛使用的病毒载体是逆转录病毒和腺相关病毒 (AAV) (7, 8)。慢病毒载体是逆转录病毒的一个亚型,在基因组整合后表达较大的转基因 (~ 10 kb),而 AAV 表达较小的转基因 (~ 4.7 kb),来自长寿命的附加体;这两种病毒载体都能够转导分裂细胞和非分裂细胞。假型慢病毒载体 (9)、新 AAV 趋向性工程 (10) 和组织特异性启动子使用的进展使得这些技术能够实现细胞特异性递送。然而,病毒递送也引入了