立体图像超分辨率(Sterereosr)近年来引起了人们的关注,这是由于手机,自动驾驶汽车和机器人的双重摄像头广泛范围。在这项工作中,我们根据Swinir的扩展(最初是为单个图像还原设计的,又提出了一种名为SWINFSR的新定单方法,以及Fast Fourier卷积(FFC)获得的频域知识。具体来说,为了有效地收集全球信息,我们通过使用FFC明确地不明显地局限于SWINIR中的残留SWIN变压器块(RSTBS),并使用结果域知识,并采用结果的残留Swin傅立叶型跨前块(RSFTB)进行特征提取。此外,为了有效,准确的立体视图融合,我们提供了一个新的跨意见模块,称为RCAM,该模块的竞争性能高于竞争性能,同时比最先进的交叉意见模块更少的计算成本。广泛的实验结果和消融研究证明了我们提出的SWINFSR的有效性和效率。
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。
图。5:用酪蛋白钝化的悬臂背面的AFM图像在0.5pm T5溶液的溶液中孵育1.5h(箭头标记T5噬菌体或可能的酪蛋白聚集体)请注意,这里的条件与手稿中呈现的原位实验不同。
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
根据国家政治宪法第194条的规定,结合第27972号法律第11个预备标题《市政组织法》,地方政府在其管辖范围内的事务中享有政治、经济和行政自治权,这种自治权基于依法行使政府、行政和管理行为的权力。
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
单光子光检测和范围(LIDAR)系统通常配备一系列检测器,以提高空间分辨率和传感速度。但是,考虑到激光跨场横跨场景产生的固定量磁通量,当更多像素在单位空间中堆积时,每像素信号到噪声(SNR)将减小。这在传感器阵列的空间分辨率与每个像素的SNR之间的空间分辨率之间提出了基本的权衡。探索了这种基本限制的理论表征。通过得出光子竞争统计量并引入一系列新的近似技术,得出了时间延迟的最大样品估计器的平均平方误差(MSE)。理论预测与模拟和实际数据良好。
上个世纪的快速技术进步导致温度传感领域中带来了新的Challenges。准确,遥远,无接触式和实时微观和纳米级的温度映射在细胞成像,微流体和纳米流体以及集成电路设计中的需求巨大,[1-11]中,这些严格的要求需要使用光学方法。这些通常分为三个主要的猫:红外(IR)隆期,IR直接检测和远程光学/荧光热量表。,由于其出色的热分辨率(10-1 K),其中最常见的是IR射量方法,例如在商业设备中发现的方法。然而,要检测到的黑体辐射的长红外波长导致室内温度(RT)对象的固有低空间分辨率为≈10µm,这是由于abbe差异的限制所期望的。对IR光的检测也遭受了由于吸收而缺乏与广泛的光学成分相兼容。[12,13]或者,在可见区域中运行的远程光学方法,例如,通过测量荧光强度或衰减时间,[14]达到了很高的热分辨率,并且可能由于较低的衍射极限而有可能提供较高的空间分辨率,并且在常见媒体(例如水和玻璃)中透明度。[13,15,16]基于强度的量化,由于光散射(样品拓扑,磷光粒子形态等)而容易出现错误。),不均匀的磷光器分布,非态磷光物种形成或批处理变异性等。虽然基于荧光时代的热量成像是继承了许多此类局限性,但其部署通常会因适合特定应用的特定要求的磷剂的可用性而受到阻碍。我们的本文提出的研究涉及在RT周围温度下在温度下进行高空间和热分辨率热图形的新型热液少量探索。在这种情况下,我们发现已知的热燃料载体,即有机染料,聚合物,量子点,稀有掺杂的金属氧化物,[17-25]面临限制,例如材料制造或薄膜沉积,耐用性和健壮性的耐用性和稳健性的耐磨性,或者不适合特定范围的特定方法或常见的特定方法。
用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理