功能性脑网络和疼痛感知会随时间波动。然而,功能性脑网络的时间依赖性重构如何导致慢性疼痛在很大程度上仍未得到解释。本文,我们探讨了 28 名类风湿性关节炎 (RA) 患者与 22 名健康对照者 (HC) 相比,在疼痛期间,患病区域 (关节) 与中性部位 (拇指) 的脑网络整合和分离随时间的变化。在功能性磁共振成像期间,所有受试者均接受单独校准的疼痛压力,对应于关节和拇指处 50 毫米的视觉模拟标尺。我们实施了一种新方法来跟踪基于任务的网络连接随时间的变化。在此框架内,我们量化了整合 (参与系数,PC) 和分离 (模块内程度 z 分数) 的度量。通过在单个节点(大脑区域)和社区(节点簇)层面的多个空间尺度上使用这些网络测量值,我们发现,在发炎关节和 HC 中相应部位受到疼痛压力期间和之后,RA 患者的社区水平 PC 通常高于 HC。这表明,在对与疾病相关的身体部位进行疼痛刺激后的时间点,RA 患者的所有大脑社区整合程度都高于 HC。然而,患者中观察到的社区相关整合度升高似乎不仅与发炎关节的疼痛刺激有关,也与中性拇指有关,因为社区水平的整合和分离在患者的身体部位之间没有差异。此外,没有
X射线反射率(XRR)被广泛用于研究硬和软凝结物质材料的表面和界面,包括2D材料,纳米材料和生物系统。它允许沿其正常的横向平均电子密度曲线沿其正态分子延伸,并具有子角度的精度。[4-6]这有助于确定各种参数,包括表面粗糙度,单层或多层材料的结构以及毛细血管对液体表面的影响。高毛利率同步X射线束可以在环境条件下实时解决分子水平的材料结构,而其他表面敏感的实验技术几乎无法访问。[7]此类实验的示例是使用专用设备和样品单元的液体表面和界面进行研究。[8–11]但是,与液体的XRR相关的特定问题。液体和支撑之间的润湿角会引起样品液体的曲率,这通常使数据分析复杂化。[12]可以通过利用能够使用大面积样品(例如Langmuir槽,[13])使用特殊数据处理方法的样本环境来解决此问题。[15]但是,在某些情况下,可以有利地利用样品曲率,例如Festersen等。[15]使用宽平行的合成光束将XRR曲线记录在“一击”中,但在散射矢量q的范围内有限。[17]这些系统正在促进高质量材料的生长[18],但同时在实验上可能非常苛刻。最新的样本环境的发展[16]发表于原位和/或操作XRR研究开放了新的机会,例如,通过化学蒸气沉积(CVD)对2D材料在液态金属催化剂(LMCAT)上的生长过程中对2D材料进行了研究。[19]必须适应高运行温度,高材料蒸发以及在大气压下暴露于反应性气体的混合物中。此外,它们仅限于有限尺寸的样本
通过在 1000 ◦ C 下进行 1 小时和 3 小时的真空退火,研究了磁控溅射合成的化学计量 Ti 0.12 Al 0.21 B 0.67 薄膜的热稳定性。比较了沉积态和退火后薄膜的化学成分、相形成和形态的变化。X 射线衍射 (XRD) 数据表明,沉积态 Ti 0.12 Al 0.21 B 0.67 薄膜中形成了单相固溶体。退火 1 小时后,扫描透射电子显微镜 (STEM)、能量色散 X 射线映射 (EDX) 和原子探针断层扫描 (APT) 研究揭示了富 Al 和富 Ti (Ti,Al)B 2 域的偏析,与旋节线分解一致。此外,AlB 12 的形成伴随着 Al 浓度从 20.9 原子% 降至 16.8 原子%,这可能是由于蒸发引起的,表明在退火 1 小时期间富 Al (Ti,Al)B 2 域发生了分解。退火 3 小时后对薄膜的分析表明,存在持续的旋节线分解以及富 Al (Ti,Al)B 2 域的进一步分解,除了 AlB 12 的形成外,还导致 Al 浓度因 Al 蒸发而降至 12.5 原子%。在 1100 ◦ C 下进行原位透射电子显微镜 (TEM) 研究期间观察到的相形成趋势与上面讨论的分解过程一致。这里确定的热稳定性极限是通过空间分辨的结构和成分探针揭示的,它将 Ti 0.12 Al 0.21 B 0.67 在真空中的应用温度范围限制在 < 1000 ◦ C 的温度范围内,并强调仅基于 XRD 数据的热稳定性研究会导致高估热稳定性。
1。S. Iyer,R。M。Gaikwad,V。Subba-Rao,C。D。Woodworth和I. Sokolov,“原子力显微镜检测到正常和癌细胞表面刷的差异”,NAT。纳米技术。4(6),389–393(2009)。2。H. Knecht和S. Mai,“端粒和核结构的3D成像:基于3D纳米形态的诊断的新兴工具”,J。单元格。生理学。226(4),859–867(2011)。3。H. Subramanian,P。Pradhan,Y。Liu,I。R. Capoglu,X。Li,J。D. Rogers,A。Heifetz,A。Heifetz,D。Kunte,H。K. Roy,A。Taflove,A。Taflove和V. Backman,“用于检测组织学无效的纳米级后果的光学方法论,对生物学细胞进行了遗传替代。natl。学院。SCI。 U.S.A. 105(51),20118–20123(2008)。 4。 H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69(13),5357–5363(2009)。 5。 R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,” 肠dis。 17(12),2427–2435(2011)。 6。 K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。SCI。U.S.A. 105(51),20118–20123(2008)。 4。 H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69(13),5357–5363(2009)。 5。 R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,” 肠dis。 17(12),2427–2435(2011)。 6。 K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。U.S.A. 105(51),20118–20123(2008)。4。H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res.69(13),5357–5363(2009)。5。R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,”肠dis。17(12),2427–2435(2011)。6。K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。69(3),1199–1204(2009)。7。I. Itzkan,L。Qiu,H。Fang,M。M. Zaman,E。Vitkin,I。C. Ghiran,S。Salahuddin,M。Modell,C。Andersson,L。M. Kimerer,P。B. Cipolloni,P。B. Cipolloni,K。H. H. Lim,S。D. Freedman,S。D. Freedman,I.Bigio,I.Bigio,I.B.Sachs,E。B. Sachs,E。B. Hanlon,L.Hanlon,l. t. t. t. t. t. t. pering and L. T.光谱显微镜在没有外源标签的活细胞中监测细胞器”。natl。学院。SCI。 U.S.A. 104(44),17255–17260(2007)。 8。 Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。SCI。U.S.A. 104(44),17255–17260(2007)。 8。 Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。U.S.A. 104(44),17255–17260(2007)。8。Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。选择。16(11),116017(2011)。9。G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。xx,362 p。
图 S1:使用 SCAN 函数获得的孤立五金刚烷分子的最低和最高占据分子轨道的模式分辨非谐波测量和电子-声子耦合能量 (EPCE)。上图:根据 100 K 下量子恒温分子动力学模拟获得的轨迹计算出的模式分辨非谐波测量。中图:使用冻结声子方法计算出的最低未占据分子轨道 (LUMO) 的模式分辨 EPCE。下图:使用冻结声子方法计算出的最高占据分子轨道 (HOMO)、HOMO-1 和 HOMO-2 能级的模式分辨 EPCE。
摘要:现代高通量纳米图案化技术(如纳米压印光刻技术)使得在大面积基底(cm 2 至 m 2 规模)上制造纳米结构阵列(尺寸为 10 至 100 纳米的特征)成为可能,例如硅晶片、玻璃片和柔性卷对卷网。制造这种大面积纳米结构阵列 (LNA) 的能力创造了广阔的设计空间,实现了广泛的应用,包括光学设备(例如线栅偏振器、透明导体、彩色滤光片和抗反射表面)以及电子元件的构建块(例如超级电容器、传感器和存储器架构)。然而,现有的计量方法将难以与制造方法一起扩展。例如,扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 具有微米级视场 (FOV),这妨碍了对以每分钟平方米的速度制造的 LNA 进行全面特性分析。散射测量方法具有更大的 FOV(通常为几百微米到几毫米),但传统散射测量系统一次只测量一个点的样品,这也使得它们对于大规模 LNA 制造来说太慢。在这项工作中,我们展示了使用高光谱成像对传统光谱散射测量方法进行并行化,将该技术的吞吐量提高了 106-107 倍。我们通过使用高光谱成像和反射光谱的逆向建模来展示这种方法,以微米级空间分辨率获得毫米和厘米级 Si 纳米柱阵列结构的三维几何数据。这项工作表明,可以对各种 LNA 进行几何测量,并有可能在大面积上实现高速测量,这对于未来的 LNA 制造至关重要。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2023 年 7 月 15 日发布。;https://doi.org/10.1101/2023.07.15.549169 doi:bioRxiv preprint
(a)Q. Alba基因组组装的HAPA和HAPB之间的结构同步。两个反转超过1 Mb:3染色体上的1.1 Mb反转和染色体上的1.9 Mb反转。35S阵列的位置用红色正方形表示,5S阵列用红色圆圈表示。(b)中期染色体用两对35(绿色)和一对5s(红色)rDNA信号扩散。小型35S信号由白色箭头指示。
摘要。与耦合模型对立面项目(CMIP)中通常使用的气候模型相比,全球风暴解析模型(GSRMS)使用强烈的水平网格,但采用了可比的垂直网格间距。在这里,我们研究了垂直网格间距的变化以及对整合时间步骤的调整如何影响图标 - 苏普郡大气GSRM模拟的基本气候数量。在45 d期间对五个不同的垂直网格进行进行模拟,分别为55至540个垂直层和最大对流层垂直网格间距,分别为800至50 m。 将垂直网格间距变化的影响与将水平网格间距从5公里降低到2.5 km的效果。 对于所考虑的大多数数量,将垂直网格间距减半比将水平网格间距减半的效果较小,但不可忽略。 垂直网格间距的每个截止时间,以及时间步长的必要减少,将云液体水增加约7%,而将水平网格间距减半约为16%。 效果既是由于垂直网格的修复和时间步长还原引起的。 在这里测试的网格间距范围内没有收敛的趋势。 云冰的数量也很折磨,并在垂直网格中进行了重新编写,但几乎不受时间步长的影响,并且确实显示出趋势进行模拟,分别为55至540个垂直层和最大对流层垂直网格间距,分别为800至50 m。将垂直网格间距变化的影响与将水平网格间距从5公里降低到2.5 km的效果。对于所考虑的大多数数量,将垂直网格间距减半比将水平网格间距减半的效果较小,但不可忽略。垂直网格间距的每个截止时间,以及时间步长的必要减少,将云液体水增加约7%,而将水平网格间距减半约为16%。效果既是由于垂直网格的修复和时间步长还原引起的。在这里测试的网格间距范围内没有收敛的趋势。云冰的数量也很折磨,并在垂直网格中进行了重新编写,但几乎不受时间步长的影响,并且确实显示出趋势
摘要:在这项研究中,开发了高度敏感的单克隆抗体(MAB),用于玉米和饲料中黄曲霉毒素B 1(AFB 1)的分解。还建立了间接竞争性酶联免疫吸附测定(IC-ELISA)和时间分辨荧光免疫测定法(TRFICA)。首先,合成了HAPEN AFB 1 -CMO,并与载体蛋白共轭,以制备用于小鼠免疫的免疫原。随后,使用Classical杂交瘤技术产生mAb。IC-ELISA的最低半最大抑制浓度(IC50)为38.6 ng/kg,线性范围为6.25–100 ng/kg。玉米和饲料中检测的极限分别为6.58 ng/kg和5.54 ng/kg,回收率范围从72%到94%。从样本处理到阅读,开发了TRFICA的检测时间仅大幅减少21分钟。此外,玉米和饲料的检测限度分别为62.7 ng/kg和121 ng/kg。线性范围为100–4000 ng/kg,回收率范围从90%到98%。总而言之,AFB 1 MAB的开发和用于高通量样品检测的IC-ELISA以及用于快速检测的TRFICA的IC-ELISA提出了可用于多功能AFB 1在不同情况下检测的强大工具。