DNA通常在分子生物学的中心教条下起作用。1即,将DNA分子转录为RNA,然后将其转化为肽,蛋白质和酶。DNA携带的基因组信息可以指导它们组装成错综复杂的结构,并在细胞中执行编程功能,包括细胞内传播,凋亡,迁移,迁移,分裂等。生物分配的形状和结构在其功能中至关重要。因此,对这些组件的几何形状和力学的理解是结构生物学的关键。在DNA纳米技术中,DNA分子被设计为直接组装成复杂的体系结构并执行相似的机制和功能。这是基于Watson - Crick Base Pairing原则,其中A与T和G与C结合,可以用作可编程的自下而上制造策略。这个想法是由Seeman于1982年提出的,他设计了几个DNA链的四向交界处。2从那时起,已经探索了许多结构和复杂的植物。最初,DNA结构不是很好的ned and ned也不是刚性的。以下里程碑是双重
满足所有x∈Ω的差异包含dU(x)∈R + o(n)是效果或m obius变换。liouville定理的推论是,梯度属于SO(n)的C 3函数是一个构图。能够全球控制满足某个差异包含的映射的这种现象被称为“刚度”。关于在弱收敛性和近似刚性表述下,塔塔尔(Tartar)在[30,31]中提出的差异夹杂物稳定性的问题与补偿紧凑性现象紧密相关,并且在PDE中弱融合方法的发展中具有极大影响。在这里,我们对近似刚性的定量版本感兴趣。在[14]中,弗里斯克(Friesecke),詹姆斯(James)和穆勒(Méuller)通过证明了k = so(n)的最佳定量刚度估计,解决了一个长期的开放问题。特别是,他们表明,对于每个有界的Lipschitz域ω⊂rn,n≥2,存在一个常数的c(ω),因此,对于k = so(n),
高选择性、速率提高和化学特异性是酶催化反应的特点,化学家们力求用合成催化剂模仿这些特点。1 与自然界的进化过程不同,小分子催化剂的合理而深思熟虑的设计需要精确的结构变化,理想情况下,这些变化可以对反应性和选择性产生可预测和合理的影响。在不对称催化领域,人们希望可靠地调整手性环境的空间和电子分布以影响反应的选择性,这导致广泛使用刚性的 C 2 对称配体和有机催化剂 2,而传统上人们认为灵活性是一种不受欢迎的特性。在这些系统中,经典的物理有机技术与通过密度泛函理论 (DFT) 定位过渡态 (TS) 结构相结合,已经成为理解选择性相互作用的常用方法。 3 对于传统手性催化剂,由于其相对不灵活性,因此可以进行计算研究,通常仅使用关键中间体和 TS 的最低能量结构来确定影响选择性的相互作用。
多对象光谱(MOS)是宇宙起源(COR)计划的技术发展优先级。在基于地面的MOS应用(例如,机器人配置的纤维和打孔板)中流行的孔径控制方法是刚性的,对于太空飞行而言是不实用的。微糖阵列(MSA)技术解决了此问题。MSA充当适应性的缝隙面膜。可以对数组进行编程,以提供与天空中稀疏分布的源相对应的任何缝隙。也可以对其进行编程以在扩展源上提供形状的缝隙。这种NGMSA SAT的开发重点介绍了当前宇宙起源计划优先事项的技术进步以及IR/光学/UV(IROUV)战略任务,该战略使命是十分纪念日调查:2020年代(PDAA)的天文学和天文学发现途径和天文学发现的途径。该项目的主要目的是从技术准备水平(TRL)3至5中以较大的格式(736×384,282.6k总像素)提高静电致动MSA,以支持PDAA-RECECMONTED IROUV战略任务。
印度[3] GSSSIETW,Mysuru/Electronics&Enerical-Tosennics和传播工程部Mysuru,印度摘要 - 该论文旨在机械地设计低成本的“软机器人手”以获得更好的有效性。软机器人手显着吸引了作为机器人技术的最终效果的焦点。与其他刚性的软机器人手相比,与人类机器人和环境机器人相互作用更安全。除此之外,以最低的成本控制非常容易控制。由于机器人的手是用柔软的材料制成的,因此它的加权也很轻,并且更合规性。本文的目的是设计低成本的软机器人手,以机械的方式获得更好的有效性,了解设计软机器人手所需的各种材料,并理解软机器人手的有效性。设计软机器人手的理由可以解释为获得更大的优势,以实现额外的“自由度”来执行各种事情,而这些事情无法通过人类手索引术语(低成本,软机器人的手,自由度,
摘要:淡水微藻骨球菌是众所周知的天然锦黄素的细胞工厂,占其总干重的4-7%。h. pluvialis囊肿中astaxanthin的生物蓄积似乎是一个非常复杂的过程,取决于其培养过程中不同的不利条件。在不利的生长条件下,H. pluvialis的红色囊肿会形成厚而刚性的细胞壁。生物分子通常需要应用相当复杂的细胞破坏,提取和纯化技术。此简短的综述提供了对H.Pluvialis上游加工中不同步骤的分析,包括生物量的插入和收集,细胞破坏,提取和纯化技术。收集了有关H.倍虫细胞,生物分子组成,特性和脂肪生物活性的有用信息。特别重点是在生长阶段的不同电气技术应用方面的最新进展,并帮助从H.Pluvialis恢复不同的生物分子。
抽象的内嗅网格细胞以六边形周期性实现空间代码,这标志着动物在环境中的位置。网格图属于同一模块的细胞共享间距和方向,仅在相对二维空间相之间有所不同,这可能是由于路径积分引导的二维吸引子的一部分而导致的。但是,这种体系结构的构造和刚性的缺点,路径积分,允许与六角形模式(例如在各种实验操作下观察到的六边形模式)的偏差。在这里,我们表明一个较简单的一维吸引子足以使网格单元对齐。使用拓扑数据分析,我们表明所得的人口活动是圆环的样本,而地图的合奏保留了网络体系结构的特征。这种低维吸引子的灵活性使其能够用进料输入协议代表歧管的几何形状,而不是施加它。更普遍地,我们的结果代表了原理证明,即直觉,即吸引子的体系结构和表示歧管是具有相同维度的拓扑对象,这对整个大脑吸引者网络的研究含义。
摘要 - 这项研究提出了一种创新的方法,可用于由四个可压缩肌腱驱动的软执行器启用的软四倍机器人的最佳步态控制。柔软的四足机器人与刚性的机器人相比,已广泛认可,可提供增强的安全性,较低的重量以及更简单的制造和控制机制。然而,它们的高度变形结构引入了非线性动力学,使得精确的步态运动控制复合物。为了解决这一问题,我们提出了一种基于模型的新型增强学习(MBRL)方法。该研究采用多阶段方法,包括国家空间限制,数据驱动的替代模型培训和MBRL开发。与基准方法相比,所提出的方法显着提高了步态控制策略的效率和性能。开发的策略既适合机器人的形态,既适合又有能力。这项研究结论是在实际情况下强调这些发现的实际适用性。索引术语 - 四倍的机器人,软执行器,增强学习,步态控制
在这篇综述中,我们讨论了基于金属纳米颗粒的药物输送系统的有效性,还描述了与肿瘤细胞递送相关的问题。在近年来,文献中已经出现了更多的报道,这些报告证明了使用金属纳米颗粒治疗各种癌症的有希望的结果。由于其独特的物理和化学特性,金属纳米颗粒有效地用于将药物传递到肿瘤细胞中,以进行癌症诊断和治疗。也可以合成它们,以控制大小和形状。然而,金属纳米颗粒对癌症治疗的有效性在很大程度上取决于其稳定性,生物相容性以及在全身或局部给药后选择性影响肿瘤细胞的能力。与金属纳米颗粒相关的另一个主要问题是它们能够克服肿瘤组织屏障,例如非典型血管结构,密集和刚性的细胞外基质以及肿瘤间质流体的高压。审查还描述了基于金属纳米颗粒的肿瘤药物输送系统的设计。还讨论了金属纳米颗粒对癌细胞的作用机理。考虑金属纳米颗粒的治疗安全性和毒性,目前正在审查其用于未来临床应用的前景。
摘要:本文回顾了有关基于生物聚合物和生物技术的生物塑料的最新研究,以解决塑料污染。随着社会的发展,塑料正在成为一个重大的问题,尤其是随着一次性的变体。这些包装膜主要由石油组成,并以高热量精制,在此过程中释放二氧化碳污染物。在其寿命结束时,塑料经常在垃圾填埋场和环境中扔掉,对人类和生态系统的健康构成风险。尽管生物塑料在当今的市场中很普遍,但它们缺乏生物降解性和高成本阻碍了广泛使用。结果,已经出现了有关新的生物降解生物塑料的新方法的研究。本文回顾了有关大肠杆菌,壳聚糖,角蛋白,纤维素和藻酸盐的研究,作为合成新的生物塑料链的非常规方法 - 刚性的3D僵硬的3D巨石和柔性包装膜。藻酸盐复合膜在可持续性,成本,机械性能和易于可扩展性方面显示出最大的希望,但仅限于低湿度环境。因此,在广泛采用之前需要进行其他研究和现场测试。