摘要:基于 P300 的脑机接口 (BCI) 性能易受延迟抖动影响。为了研究延迟抖动对 BCI 系统性能的影响,我们提出了基于分类器的延迟估计 (CBLE) 方法。在我们之前的研究中,CBLE 基于最小二乘 (LS) 和逐步线性判别分析 (SWLDA) 分类器。在这里,我们旨在使用稀疏自动编码器 (SAE) 扩展 CBLE 方法,以将基于 SAE 的 CBLE 方法与基于 LS 和 SWLDA 的 CBLE 进行比较。新开发的基于 SAE 的 CBLE 和以前使用的方法也应用于新收集的数据集,以降低出现虚假相关的可能性。我们的结果显示,BCI 准确度和估计的延迟抖动之间存在显着 (p < 0.001) 负相关性。此外,我们还研究了电极数量对每种分类技术的影响。我们的结果表明,总体而言,无论分类方法和电极数量如何,CBLE 都能发挥作用;相比之下,电极数量对 BCI 性能的影响则取决于分类器。
此外,一些研究应用了集合技术来改善结果。参考[6]进行了几种ML算法的比较:逻辑回归,线性判别分析,k-neart邻居,决策树,支持向量机,Adaboost分类器,梯度增强分类器,随机森林分类器,随机森林分类器和额外的树分类器。使用PIMA印度糖尿病数据集和早期糖尿病风险预测数据集评估了这些算法。与两个数据集中的其他机器学习算法相比,整体机器学习算法提供了更好的分类精度。在其他研究[7]中,使用了决策树,SVM,随机森林,逻辑回归,KNN和各种集合技术。该研究采用了PIMA印度糖尿病数据集和203名来自孟加拉国的女性患者的样本。此外,采用了Smote和Adasyn方法来解决阶级不平衡问题。XGBoost分类器与Adasyn方法结合使用,得出的结果最佳,获得了81%的精度,F1系数为0.81,AUC为0.84。
这项研究的目的是分析电极之间的相互作用的贡献,即以相关性或jaccard距离测量,对运动成像范式中两种作用的分类,即左手运动和右手运动。分析是在两个分类模型中进行的,即静态(线性判别分析,LDA)模型和动态(隐藏的条件随机范围,HCRF)模型。还分析了在静态和动态模型中使用滑动窗口技术(SWT)的影响。The study proved that their combination with temporal features provides significant information to improve the classification in a two-class motor imagery task for LDA (average accuracy: 0.7192 no additional features, 0.7617 by adding correlation, 0.7606 by adding Jaccard distance; p < 0.001) and HCRF (average accuracy: 0.7370 no additional features, 0.7764 by adding相关性,通过添加Jaccard距离为0.7793;另外,我们表明,在相互作用度量或分类器本身的性质上,电极之间的相互作用显着提高了每个分类器的性能。
I.在[1]中引入的分布式自适应信号融合(DASF)算法可用于以分离的方式解决广泛的空间滤波和信号融合问题,例如,无线传感器网络(WSN)。此类问题的示例包括基于广义特征值分解[3],规范相关性分析[4],[5],最小方差波束[6]等的最小平方英尺误差估计,判别分析[3]等。DASF算法旨在应对WSN的典型带宽或能量限制。WSN中的典型空间过滤或信号融合问题涉及根据网络中每个节点收集的传感器数据优化成本函数。与需要在融合中心汇总的每个节点的传感器数据相反,DASF算法要求节点在彼此之间仅共享压缩数据。然后将此数据用于在每次迭代时在节点中局部构建全局优化问题的压缩版本。结果,全球(集中)的任何求解器
摘要。深度神经网络 (DNN) 已在各种机器学习领域得到研究。例如,事件相关电位 (ERP) 信号分类是一项高度复杂的任务,可能适合 DNN,因为信噪比低,并且底层空间和时间模式显示出很大的主体内和主体间变异性。卷积神经网络 (CNN) 与基线传统模型(即线性判别分析 (LDA) 和支持向量机 (SVM))进行了比较,使用大量多主体公开可用的学龄儿童 P300 数据集(138 名男性和 112 名女性)进行单次试验分类。对于单次试验分类,所有测试的分类模型的分类准确率保持在 62% 到 64% 之间。当将训练好的分类模型应用于平均试验时,准确率提高到 76-79%,分类模型之间没有显著差异。CNN 并未证明优于测试数据集的基线。讨论了与相关文献的比较、局限性和未来发展方向。
摘要:已有多项旨在评估智力生产力和专门设计的任务的研究。然而,结果可能无法反映实际的智力生产力,因为设计的任务与办公室工作不同。同时,办公室工作人员有两种心理状态(工作和暂时休息状态),它们在脑力工作过程中交替变化。如果能检测到员工的心理状态,就能更准确地衡量生产力。在本研究中,作者旨在通过测量脑力工作时的生理指标(如脑电图、心电图和眼外肌和眼轮匝肌的肌电图)来开发一种检测暂时休息状态的方法。从这些测量指标中,作者提取了 6 个特征,即脑电波和脑电波、心率的低频和高频波以及眨眼和扫视眼球运动的间隔。它们被用来通过马哈拉诺比斯判别分析来检测暂时休息状态。实验结果显示,检测准确率为80.2%。该结果显示,生理指标作为心理状态检测方法之一具有可行性。
目的:RS探索了甲状腺肿瘤临床诊断的可行性。方法:收集来自30名良性患者和30名恶性患者的肿瘤标本。对收集的标本进行了RS和组织病理学分析。计算所有标本的拉曼峰强度,并使用判别分析分析数据。结果:(1)女性恶性肿瘤的患病率高达76.7%。恶性甲状腺肿瘤的中央淋巴结转移占病例的33.3%,颈外侧淋巴结转移仅占6.7%。(2)恶性甲状腺肿瘤的光谱强度明显大于1309 cm -1的良性甲状腺肿瘤,这应该是甲状腺癌的特征峰。RS与恶性甲状腺肿瘤区分良性的RS的准确性,敏感性和特异性为95%,83.3%和89.2%。结论:RS对于诊断甲状腺肿瘤是可行的。本研究为RS在甲状腺组织评估中的更广泛应用提供了实验和临床支持。证据级别:: 4级。
线性代数基础知识:向量空间和子空间,基础和维度,血统转换,四个基本子空间。矩阵理论:规范和空间,特征值和特征向量,特殊矩阵及其特性,最小平方和最小规范的解决方案。矩阵分解算法-SVD:属性和应用,低等级近似值,革兰氏施密特过程,极性分解。尺寸还原算法和JCF:主成分分析,血统判别分析,最小多项式和约旦的规范形式。微积分:微积分的基本概念:部分导数,梯度,定向衍生物Jacobian,Hessian,凸集,凸功能及其属性。优化:无约束和受约束的优化,受约束和不受约束优化的数值优化技术:牛顿的方法,最陡的下降方法,惩罚函数方法。概率:概率的基本概念:条件概率,贝叶斯定理独立性,总概率,期望和方差定理,几乎没有离散和连续分布,联合分布和协方差。支持向量机:SVM简介,错误最大程度地减少LPP,双重性和软边距分类器的概念。参考书:
摘要 — 正字法视觉感知(阅读)是通过大脑不同语言中心与视觉皮层之间广泛的动态相互作用进行编码的。在本研究中,我们利用脑磁图 (MEG) 研究了正字法视觉感知解码,其中短语以视觉方式呈现给参与者。我们比较了使用枕叶内的传感器和使用整个头部传感器获得的解码性能。使用了两种简单的机器学习分类器,即支持向量机 (SVM) 和线性判别分析 (LDA)。实验结果表明,仅使用枕叶传感器的解码性能与任务期间使用所有传感器获得的性能相似,均高于偶然水平。此外,通过采取短时间窗口进行的时间分析表明,与后期相比,枕叶传感器在开始时更具判别性,而在后期使用整个头部传感器设置的表现略好于枕叶传感器。这一发现可能表明在视觉语言感知过程中存在顺序(从视觉皮层到枕叶以外的其他区域)。
摘要:营养不良是各国幼儿遇到的主要健康问题之一。根据2022年印尼营养状况调查结果,印度尼西亚五岁以下儿童的不良营养高于非洲和全球的平均营养不良。因此,需要一种方法来预测早期五岁以下儿童的营养状况,以便政府(通过地区卫生办公室)可以立即提供必要的治疗方法。这项研究旨在使用各种机器学习(ML)方法(即幼稚的贝叶斯,线性判别分析,决策树,K-Nearest邻居,随机森林,随机森林,随机森林和支持载体机器),基于年龄,体重指数(BMI),体重和身体长度来预测或分类幼儿的营养状况。根据准确性,敏感性,特异性,曲线(AUC)和Cohen的Kappa系数(CKC)评估每个ML方法的预测性能。测试结果表明,随机森林方法最建议用于以准确性,灵敏度,特异性,AUC和CKC值预测幼儿的营养状况:0.9737,0.9500,0.9500,0.9881,0.9990和0.9609。该研究的贡献是更容易获得有关幼儿营养状况的信息。