此外,一些研究应用了集合技术来改善结果。参考[6]进行了几种ML算法的比较:逻辑回归,线性判别分析,k-neart邻居,决策树,支持向量机,Adaboost分类器,梯度增强分类器,随机森林分类器,随机森林分类器和额外的树分类器。使用PIMA印度糖尿病数据集和早期糖尿病风险预测数据集评估了这些算法。与两个数据集中的其他机器学习算法相比,整体机器学习算法提供了更好的分类精度。在其他研究[7]中,使用了决策树,SVM,随机森林,逻辑回归,KNN和各种集合技术。该研究采用了PIMA印度糖尿病数据集和203名来自孟加拉国的女性患者的样本。此外,采用了Smote和Adasyn方法来解决阶级不平衡问题。XGBoost分类器与Adasyn方法结合使用,得出的结果最佳,获得了81%的精度,F1系数为0.81,AUC为0.84。