在生物科学中,机器学习(ML)已成为一项基本技术,它正在彻底改变研究方法并加快各种领域的发现。在本文中讨论了ML在生物科学中的各种用途的详细概述,包括药物开发,蛋白质科学,疫苗,生物系统和计算生物学。ML模型促进了副作用降低和疗效提高的创新药物候选物的快速发现,因此通过使用大规模的生物学数据来加快药物开发管道。mL技术正在改善蛋白质科学领域蛋白质相互作用,结构和功能的预测。ML技术极大地帮助了疫苗,表位预测和抗原选择的设计。ML模型基于个体免疫反应评估遗传和蛋白质组学数据,促进了对免疫原性和疫苗功效最佳的个性化免疫发电的产生。此外,通过复制细胞过程,建模复杂的生物网络和预测基因调节机制,ML技术正在彻底改变生物系统的研究。在计算生物学中,ML用于表型预测,基因表达分析和序列分析。ML模型促进了精确医学技术的发展,药物反应模式的表征以及通过组合多摩学数据来鉴定疾病生物标志物。充分探索ML在解决医疗保健,计算机科学家,生物学家和生物信息学家中的重大问题的潜力
主要关键词