在计算机视觉中,识别视频流中的人类动作是一项具有挑战性的任务,其主要应用领域包括脑机接口和监控。深度学习最近取得了显著的成果,但在实践中却很难使用,因为它的训练需要大量数据集和专用的耗能硬件。在这项工作中,我们提出了一种基于储层计算范式的可扩展光子神经启发式架构,能够以最先进的精度识别基于视频的人类动作。我们的实验光学装置由现成的组件组成,并实现了一个易于训练且可扩展到数十万个节点的大型并行循环神经网络。这项工作为实现用于实时视频处理的简单可重构且节能的光子信息处理系统铺平了道路。
人类因素委员会于 1980 年 10 月由国家研究委员会行为与社会科学和教育委员会成立。该委员会由海军研究办公室、空军科学研究办公室、陆军行为与社会科学研究研究所、国家航空航天管理局和国家科学基金会赞助。该委员会的主要目标是为理论和方法问题提供新的视角,确定扩大和加强人为因素科学基础所需的基础研究,并吸引该领域内外的科学家进行互动交流并开展所需的研究。委员会的目标是提供坚实的研究基础,作为有效人为因素实践的基础。人为因素问题出现在人类与技术社会产品互动的每个领域。为了有效地履行职责,委员会吸纳了来自各个科学和工程学科的专家。委员会成员包括心理学、工程学、生物力学、生理学、医学、认知科学、机器智能、计算机科学、社会学、教育学和人为因素工程等领域的专家。其他学科的代表也参加工作组、研讨会和专题讨论会。每个委员会的成员都应包括以下领域的专家:为提高人为因素的科学基础提供所需的基本数据、理论和方法。
推荐引用 推荐引用 Savur, Celal,“一种利用人体舒适度指数改善人机协作的生理计算系统”(2022 年)。论文。罗彻斯特理工学院。访问自
一段时间以来,电子行业已经认识到静电放电 (ESD) 是潜在损坏源,尤其是对半导体器件而言。在此期间,人们一直在努力开发有意义的人体 ESD 脉冲和能够反复将不同电压水平的脉冲施加到半导体器件的设备。目的是确定部件承受特定电压水平的 ESD 脉冲的能力,并将该信息用作部件坚固性的指标。目前,可用设备能够施加在 MIL-STD 883C 等规范中经常描述的 ESD 脉冲作为人体脉冲;但这是正确的脉冲吗?最近的技术论文提出了一些关于 ESD 波形和捕获该波形的方法的有趣问题。IEC 801-2 等规范也导致了 ESD 波形的明显混乱,这些信息来源共同成为促进此项调查的催化剂。
多维控件 ................................................................................................................150 大小 ....................................................................................................................................152 形状 ....................................................................................................................................154 控件空间 ................................................................................................................................154 标签 ....................................................................................................................................155 阻力 ....................................................................................................................................155 控制面板 ................................................................................................................................156
课程描述 本学期在线课程分为十三个模块,每个模块涵盖一个关键的人体神经解剖系统。本课程的主要重点是掌握人体神经解剖学并了解大脑中各种结构如何连接以形成功能性神经系统。从模块 3 开始,您将完成与每个模块相关的新焦点案例研究。每个焦点案例研究都描述了一名表现出该周所研究神经系统破坏特征症状的患者。在一周的时间里,您将使用模块和以前模块中提供的信息“解决”多任务案例研究。这些案例研究旨在帮助您掌握所研究的主要神经系统的神经解剖学和功能。在本课程结束时,您不仅将掌握人体神经解剖学的实际知识,而且还能够利用这些知识来解释大脑结构破坏如何导致人类行为和认知的变化。