常规化肥,为土壤生育能力,植物活力和生态平衡提供多方面的优势。该研究研究了生物肥料的不同应用速率对菠菜培养中各种生长参数,营养同化效率,产量成分和生理反应的影响。进行了一系列的实验试验,以评估生物肥料处理的影响,包括Vermicompost,Azotobacter和磷酸盐 - 溶解细菌(PSB)对菠菜植物的影响。结果表明,与常规的肥料实践和对照组相比,生物肥料的联合应用显着增强了关键参数,包括植物高度,叶子面积,芽生物量,根生物量,养分同化效率,产量成分和生理反应,与常规的肥料实践和对照组相比。相关性和回归分析揭示了生物肥料应用水平与各种生长指标,营养同化效率,产量成分和生理反应之间的牢固正相关关系。此外,方差分析的结果证实了治疗组之间差异的统计学意义,强调了生物肥料在促进菠菜生长和生产力方面的疗效。经济评估表明,尽管初始成本更高,但使用生物量化剂会导致菠菜产量增加,从而使其成为传统施肥方法的财务可行且在环境上可持续的替代品。
生物技术涵盖各种技术,使科学家能够操纵农作物的基因组成以获得所需的特性。例如,基因工程可以将特定基因引入植物,赋予植物抗虫、抗除草剂和改善营养成分等特性。分子标记通过标记辅助育种帮助选择所需特性,使育种者能够根据特定 DNA 序列的存在与否做出明智的决定。基因组编辑技术(例如 CRISPR-Cas9)提供了精确而有效的工具来修改植物基因组中的特定基因,为作物改良开辟了新的可能性 [2]。
摘要:胃癌 (GC) 是一种高度异质性的复杂疾病,是全球第五大常见癌症(2018 年全球约有 100 万例病例和 784,000 例死亡)。GC 预后不良(5 年生存率不到 20%),但人们正在努力寻找在肿瘤形成过程中高表达的基因,并以相关蛋白质为靶点来寻找新的抗癌分子。从基因表达综合 (GEO) 库收集数据,以获得三个数据集矩阵,分析胃肿瘤组织与正常胃组织,并涉及使用 GPL570 平台和不同来源进行的微阵列分析。使用 GEPIA 工具对数据进行差异表达分析,使用 KMPlot 进行生存分析。为了提高稳健性,使用 TCGA 数据库中的 GC 数据来证实 GEO 数据的分析。通过 RT-qPCR 在几种 GC 细胞系中确认了 GEO 和 TCGA 中计算机分析发现的基因。使用 AlphaFold 蛋白质结构数据库来查找相应的蛋白质。然后,进行基于结构的虚拟筛选以寻找分子,并使用 DockThor 服务器进行对接分析。我们的计算机和 RT-qPCR 分析结果证实了 AJUBA 、 CD80 和 NOLC1 基因在 GC 系中高表达。因此,在 SBVS 分析中使用相应的蛋白质。共有三种分子,每个靶标一个分子,即 MCULE-2386589557-0-6、MCULE-9178344200-0-1 和 MCULE-5881513100-0-29。所有分子都具有良好的药代动力学、药效学和毒理学特性。分子对接分析表明,这些分子与蛋白质在对其活性至关重要的位点相互作用。使用虚拟筛选方法,对在致癌细胞功能中发挥重要作用的基因编码的蛋白质进行分子对接研究。将公共微阵列数据的系统收集与比较元分析、RT-qPCR、SBVS 和分子对接分析相结合,提供了一种合适的方法来寻找与 GC 有关的基因并与相应的蛋白质一起寻找具有抗癌特性的新分子。
几十年来,自然发生的生物发光现象一直吸引着人们,如今,这种现象正被开发为医学研究和临床前成像的有力工具。荧光素酶在遇到底物时会发光,从而使其活性可以被可视化和动态跟踪。通过将荧光素酶基因插入基因组中的特定位点,可以设计报告基因来监测其原生环境中的基因表达,并检测体内的表观遗传变化。内源性生物发光报告基因可提供高灵敏度的定量基因表达读数,既非常适合纵向研究,也可用于高通量药物筛选。在本文中,我们概述了生物发光报告基因在表观遗传学研究中的一些应用和好处,特别关注揭示治疗遗传和表观遗传疾病的新治疗选择。
替代聚合物原料非常需要解决与基于石化的材料相关的环境,社会和安全问题。木质纤维素生物量(LCB)已成为一种关键饲料库存,因为它是一种丰富且普遍存在的可再生资源。LCB可以解构以产生有价值的燃料,化学物质和小分子/低聚物,这些燃料可适应于修饰和多种化。然而,LCB的多样性使对生物融资概念的评估复杂化,包括流程规模,生产产出,植物经济学和生命周期管理。我们讨论了当前LCB生物填充研究的各个方面,重点是主要过程阶段,包括原料选择,分级/解构和表征,以及产品纯化,功能化和聚合以生产有价值的大分子分子材料。我们强调机会将未充分利用和复杂的原料增值,利用高级
摘要:随着世界不断发展和发展,人口也有增长,在这种人口中,人们对能源需求的需求越来越多,以及产生的食物浪费量。因此,非常需要寻找解决这两个问题的解决方案,同时仍然可以遇到贫困家庭。这项研究研究了利用双重培训的微生物燃料电池或MFC利用生物电性的水果,肉类和蔬菜食品废物的潜力。研究人员改编了Sambavi等人的方法。(2021)准备MFC设置。人类尿液是从健康的个体中收集的,作为接种物。MFC设置产生的电压。使用模拟万用表来量化MFC产生的生物电性14(14)天。单向方差分析测试表明,三种类型的MFC没有显示出电力产生的任何显着差异[F(2,39)= 1.307,p = 0.2822]。这表明食物浪费的类型不是影响MFC生物电性产生的关键因素。此外,果实,肉和蔬菜MFC在不同时间段,特别是在第五天,第二和第三天分别达到峰值电压输出。这表明食物浪费的类型决定了MFC达到其峰值电压输出的时间。建议进一步研究以检查三种类型的MFC在产生生物电性方面的潜力。
结果:我们的发现表明,在初次疫苗接种后第3至6个月之间,抗尖峰IgG滴度的迅速减弱(血浆和唾液分别减少了1.7倍和2.5倍; p <0.0001)。相反,在此期间,峰值记忆B细胞的频率增加(增加2.4倍; P <0.0001),而尖峰特异性CD4+和CD8+ T细胞的频率在所有评估的功能中保持稳定:细胞毒性,IFN G,IL-2,IL-2和TNF A表达。促进疫苗接种显着改善了血浆和唾液中的抗体反应,并且在中和能力中观察到的最深刻的变化针对当前循环的Omicron变体(增加了25.6倍; P <0.0001)。对于峰值IgG+记忆B细胞(增加2.4倍; P <0.0001)和细胞毒性CD4+和CD8+ T细胞反应(分别增加1.7-和1.9倍; P <0.05),增强疫苗接种的积极作用也很明显。
摘要:重金属离子和农药的生物修复既经济又环保。微生物修复被认为优于传统的非生物修复工艺,因为它具有成本效益、减少生物和化学污泥、对特定金属离子具有选择性以及在稀释废水中的高去除效率等优点。以生物炭为载体的固定化技术是推进微生物修复的重要方法之一。本文概述了生物炭基材料,包括其设计和生产策略、物理化学性质以及作为微生物吸附剂和载体的应用。本综述还概述了能够应对进入环境的各种重金属离子和/或农药的微生物。农药和重金属的生物修复会受到微生物活动、污染物的生物利用度以及 pH 值和温度等环境因素的影响。此外,通过阐明相互作用机制,本文总结了重金属和农药的微生物修复。在这篇综述中,我们还整理并讨论了利用生物炭和微生物进行各种生物修复策略的研究成果,以及生物炭上固定化细菌如何有助于改进生物修复策略。本文还总结了农药和重金属的来源和危害。最后,基于上述研究,本研究概述了该领域的未来发展方向。
本文件由全威尔士治疗和毒理学中心 (AWTTC) 和威尔士政府编写,随后得到全威尔士药物战略小组 (AWMSG) 的认可。如有任何疑问,请联系 AWTTC:全威尔士治疗和毒理学中心劳特利奇学术中心兰多大学医院彭兰路兰多格拉摩根谷 CF64 2XX awttc@wales.nhs.uk 029 218 26900 本文件中的信息可能会接受审查,并可能随时更新或撤回。AWTTC 和 AWMSG 对使用其内容不承担任何责任。本文件中提供的信息可以使用以下引用复制:全威尔士药物战略小组。最大限度地利用生物仿制药带来的机会:威尔士国家战略。2023 年 1 月。版权所有 AWTTC 2023。保留所有权利。
背景:黑色素瘤是起源于黑色素细胞的皮肤恶性肿瘤,主要通过手术、化疗、靶向治疗、免疫治疗、放射治疗等治疗。靶向治疗是治疗晚期黑色素瘤的一种有前途的方法,但总是会发生耐药性。本研究旨在利用计算方法有效地识别耐药黑色素瘤的潜在靶基因和候选药物。方法:使用文本挖掘工具 pubmed2ensembl 识别与耐药黑色素瘤相关的基因。通过 GO 和 KEGG 通路富集分析进行进一步的基因筛选。使用 STRING 数据库和 Cytoscape 构建 PPI 网络。使用 GEPIA 进行生存分析并绘制 Kaplan-Meier 曲线。在 Pharmaprojects 中筛选出针对这些基因的药物。利用 DeepPurpose 预测了药物-靶标相互作用的结合亲和力得分。结果:通过文本挖掘共发现 433 个与耐药黑色素瘤相关的基因。 GO和KEGG分析中统计学差异最大的功能富集通路包含348个基因,通过Cytoscape中的MCODE进一步筛选出27个枢纽基因。经过生存分析和文献综述,鉴定出6个具有统计学差异的基因。在限制条件下,利用Pharmaprojects找到了16个针对枢纽基因的候选药物。最终,利用DeepPurpose预测出11个亲和力得分最高的ERBB2靶向药物,包括10个ERBB2激酶抑制剂和1个抗体-药物偶联物。结论:文本挖掘和生物信息学是药物发现中基因识别的有效方法。DeepPurpose是一种高效、可操作的深度学习工具,可用于预测DTI和选择候选药物。
