Avanish Kumar Srivastava博士获得了硕士学位。(hons。)来自IIT Roorkee的物理学,UOR(1986),M。Tech。 IIT Kanpur(1988)和博士学位的材料科学中的。在IISC Bangalore(1996)的冶金学中,在工程学院中。 他的多产研究适用于理解各种材料的成核增长机制,相变,微观结构和缺陷,以散装和引人入胜的纳米规模的形式出色,并且在全球范围内都非常出色,并且众所周知。 他为与(i)迅速固化的金属系统有关的高级材料领域的各种项目做出了巨大贡献,(ii)纳米结构,(iii)复合材料,(iv)太阳能,(v)热电学,(v)热电,(vi)磁性,(vi)磁性,(vii)对财富的浪费,以及(viii)和(viii)安全,健康和环境。 研究和学者的贡献来自IIT Roorkee的物理学,UOR(1986),M。Tech。IIT Kanpur(1988)和博士学位的材料科学中的。在IISC Bangalore(1996)的冶金学中,在工程学院中。 他的多产研究适用于理解各种材料的成核增长机制,相变,微观结构和缺陷,以散装和引人入胜的纳米规模的形式出色,并且在全球范围内都非常出色,并且众所周知。 他为与(i)迅速固化的金属系统有关的高级材料领域的各种项目做出了巨大贡献,(ii)纳米结构,(iii)复合材料,(iv)太阳能,(v)热电学,(v)热电,(vi)磁性,(vi)磁性,(vii)对财富的浪费,以及(viii)和(viii)安全,健康和环境。 研究和学者的贡献。在IISC Bangalore(1996)的冶金学中,在工程学院中。他的多产研究适用于理解各种材料的成核增长机制,相变,微观结构和缺陷,以散装和引人入胜的纳米规模的形式出色,并且在全球范围内都非常出色,并且众所周知。他为与(i)迅速固化的金属系统有关的高级材料领域的各种项目做出了巨大贡献,(ii)纳米结构,(iii)复合材料,(iv)太阳能,(v)热电学,(v)热电,(vi)磁性,(vi)磁性,(vii)对财富的浪费,以及(viii)和(viii)安全,健康和环境。研究和学者的贡献
摘要。头骨剥离是从其他组织中的脑组织分割,例如皮肤,脂肪,肌肉,颈部,眼球等。在MRI中被视为kull剥离的非脑组织的存在是预处理大脑图像的关键步骤。为了调查和治疗脑损伤和疾病,新生儿MRI脑的分割非常重要。因此,MRI脑框架需要数学形态分析,称为颅骨剥离以使大脑与颅外或非脑结构分离。本文总结了可用于头骨剥离的方法以及有关现有颅骨剥离程序的最新文献。通过研究和分析大脑图像在采用新的,可靠和自动化的技术来剥离MRI头骨的领域中,仍然存在高度挑战的领域。
removal from plain carbon steel components • Coatings for anti-bacterial and fuel tank applications • Nano-composite Hard Coating • Certified Reference Materials • Erosion resistant steel • Graphene coated steel • Synthetic flux and dephosphorization of Steel in Induction Furnace • DRI from mill scale and lean grade non coking coal in Tunnel Kiln • Briquetting of Ore fines • Pellet-sinter composite agglomerate of Iron氧化物罚款用于BLAST
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。