○ 哪些基因编码了红细胞镰状化?○ CRISPR-Cas9 在原核生物(如细菌)中的自然机制是什么,它是如何被修改并用于编辑真核生物(有细胞核的生物)中的基因的?○ CRISPR 基因编辑技术如何应用于镰状细胞病患者?
作为镰状细胞贫血的现象(也是镰状细胞病)及其遗传基础可能是您处理遗传相关疾病时要出现的第一个例子。这一方面是因为它是一种疾病,在分子水平上也相对容易解释,另一方面,另一方面,特征的特征增加了对疟疾的抵抗力,因此该疾病在疟疾较高的地区也可能是进化的优势。许多遗传方面可以根据此临床情况来解释和理解。同时,它也是最广泛的疾病,基于一个基因突变,全球有770万受影响的人[1,2]。
(英文:脱氧核糖核酸)是由不同的脱氧核糖核苷酸组成的核酸。它承载着所有生物和DNA病毒的遗传信息。长链多核苷酸在基因片段中包含有其核苷酸的特定序列。当遗传信息从 DNA 转录为 RNA(参见转录)时,这些 DNA 片段充当构建相应核糖核酸(RNA)的模板。
这是一个简单的演示,您可以和客户玩石头剪刀布。它是在配备 AMD 的 SOM(系统模块)“Kria™ K26 SoM”的“KR260 机器人入门套件”上实现的。 输入:请在USB摄像头前展示“石头、剪刀、布”。 处理:在ROS2(机器人操作系统)下,AI推理处理单元与机械手控制单元应用程序分离,对输入图像进行“手势分类”,输出PWM信号控制机械手。 输出:经过上述处理后,产生以下两个输出。输出1:将“手势分类”的结果输出到显示器。 ⇒ 根据顾客所出的手牌(石头、剪刀、布),通过AI推理,即AI的预测,显示获胜手牌。 输出2:根据处理结果,控制“机械手”中实现的伺服电机,帮助客户获胜。 ⇒ 下面的例子中,视频输入是“石头”,所以“机械手”会变成“布”的形状来获胜。
N. Takeda、Takafumi Hiramoto、Satoshi Tasaka、Hisato Hirano、Takeshi Tokuyama、Hideki Uosaki、Soh Ishiguro、Madina Kagieva、Hiroyuki Yamano、Yuki Ozaki、Daisuke Motooka、Hideto Mori、Yuhei Kirita、Yoshiaki Kise、Yuzuru Itoh、Satoaki Matoba、Hiroyuki Aburatani、Nozomu Yachie、Tautvydas Karvelis、Virginijus Siksnys、Tsukasa Ohmori**、Atsushi Hoshino** 和 Osamu Nureki** (*第一作者,**通讯作者) 〈DOI〉10.1016/j.cell.2023.08.031 〈 URL 〉https://doi.org/10.1016/j.cell.2023.08.031
方法与结果 改性活生物体的安全评估是根据经合组织、国际食品法典委员会和粮农组织等国际机构制定的原则进行的。韩国已经制定了遵循国际标准和准则的强有力的改性活生物体安全评估框架。然而,基因编辑技术是一项近期的创新,正在促使各国制定新的监管条款。各国对基因编辑产品的监管状况差异很大。在某些情况下,特定国家采用了宽松的规定,使某些情况免于安全评估。在此背景下,我们总结了药用植物基因编辑的研究现状。接下来,我们介绍韩国农业和畜牧业改性活生物体安全评估体系,并对各国基因编辑产品的监管状况进行比较分析。
量子密钥分发 (QKD) [1–3] 解决了两个用户之间共享密钥的问题。此类密钥可用于安全通信。尽管原始 QKD 协议 [2–5] 依赖于在离散量子态(如单光子的偏振)中对经典信息比特进行编码,但人们也可以利用连续变量 QKD (CV QKD) 协议,其中比特在光的正交相位上进行编码 [6–9]。尤其是,CV QKD 系统的最新进展使其与传统的离散变量系统 [10, 11] 处于竞争地位。例如,与需要单光子探测器的离散变量 QKD 协议相反,CV QKD 使用相干测量方案(如同差和/或异差检测)来测量光正交相位,与高速率相干电信系统兼容 [12–14]。此外,与大都市区域相比,CV QKD 协议在短距离内是更好的选择 [11]。然而,一旦涉及长距离,CV QKD 就有其自身的挑战来与离散变量 QKD 竞争 [15]。本文研究了如何通过使用现实的非确定性放大来增强 CV QKD 系统中的安全距离 [16]。提出的提高 CV QKD 协议速率与距离性能的解决方案之一是使用无噪声线性放大器 (NLA) [16,17]。众所周知,确定性放大不可能无噪声 [18]。NLA 只能以概率方式工作。这不可避免地会将密钥速率降低一个与 NLA 成功率相对应的倍数,这意味着,在短距离内,使用 NLA 可能没有好处。然而,由于信噪比的提高,密钥率可能会在长距离上增加。也就是说,虽然我们可用于密钥提取的数据点数量较少,但其余点的质量也可能很高,这样就可以提取出更多的密钥位。这已在理论上得到证明,方法是将 NLA 视为一个概率性的、但无噪声的黑匣子,其中成功概率的上限为 1 /g 2,其中 g 是放大增益 [16]。当我们将上述理想的 NLA 替换为提供类似 NLA 功能的现实系统时,情况可能会大不相同。