大型真核基因组被包装到核的受限区域中,以保护遗传密码并提供一个专门的环境来读取,复制和修复DNA。基因组在染色质环和自我相互作用域中的物理组织提供了基因组结构的基本结构单位。这些结构排列是复杂的,多层的,高度动态的,并且影响了基因组的不同区域如何相互作用。通过增强剂促进剂相互作用在转录过程中的作用已得到很好的确定。不太了解的是核结构如何影响DNA复制和修复过程中染色质交易的大量交易。在这篇综述中,我们讨论了在细胞周期中如何调节基因组结构,以影响复制起源的定位和DNA双链断裂修复的协调。基因组结构在这些细胞过程中的作用突出了其在保存基因组完整性和预防癌症的关键参与。
本综述旨在回顾有限元法在优化工艺参数和提高粉末床熔合增材制造工艺部件的机械性能方面的应用。回顾了粉末床熔合过程模拟中的最新有限元模型。详细总结了宏观层面上激光束熔化或电子束熔化过程的数值建模方法。具体而言,阐明了零件模型预处理、工艺参数、网格方案和温度相关材料特性的重要性。还讨论了用于降低计算成本的模拟技术。然后回顾并讨论了现有的粉末床熔合过程模拟中的有限元模型。根据熔池和打印部件的特点对模拟结果进行分类。然后通过实验结果验证了模拟结果。最后,阐述了有限元法在材料设计、过程监控和控制以及工艺优化等其他增材制造问题方面的意义。总结了现有有限元模型的缺点。并提出了优化PBF工艺参数的潜在新方法。
图1:我们的模拟研究中涉及的离子,溶剂分子和TBT单体的插图。面板(a)和(b)分别描绘了有机溶剂分子1,3-二氧烷(DOL)和1,2-二甲基乙烷(DME)。面板(c)显示锂离子(li +),而面板(d)则显示BIS(三氟甲烷)磺胺酰亚胺(TFSI-)。面板(E)说明了4(噻吩-3-基)有益的阳离子 - π相互作用态,当苯环为z = 0平面时,带有锂的乙二醇(TBT),带有锂离子li +,而平面噻吩环则是硫烯环使角度呈角度,θ= 34。31◦使用Z = 0平面。TBT和Li +离子的苯环之间的最小距离为z min = 1。84˚A。面板(F)说明当将噻吩环放置在Z = 0平面时,相同TBT分子的阳离子-π相互作用状态,苯环的平面使角度θ= 34。31◦使用Z = 0平面。在这种配置中,噻吩环和li +离子之间的最小距离为z m in = 2。0°A。
原子建模通常分为两种不同类型的模拟。一方面,包括Hartree -Fock和密度功能理论(DFT)方法在内的量子方法被认为是最准确的,几乎用于任何类型的化学物种[1,2]。另一方面,经典力场用于执行精度较低的大规模和长期模拟[3,4]。但是,仍然很难连接这两种方法,直到现在,人们几乎无法执行涉及数百万个原子的纳秒原子的模拟,同时保留量子方法的准确性。在这种情况下,近年来已经提出了机器学习互动电位(MLIP),并显示出实现此类模拟的巨大潜力[5-7]。目前考虑了许多方法,包括人工神经网络[8],高斯近似方法[9],线性电位[10,11],频谱邻域分析电位[12],对称梯度域机器学习[13,14]和矩张量张量的电位[15]。这些技术的成功得到了成功解决的各种材料的认可:纯属金属[16-20],有机分子[21-24],氧化物[25,26],水[27 - 31],无定形材料[32 - 37]和HYBRIDPEROVSKITES [32 - 37]和HYBRIDERIDPEROVSKITES [38]。对于所有这些技术,主要过程包括对力场使用非常通用的分析公式,然后将其进行参数化以匹配DFT计算数据库,包括总能量,力和应力张量。但是,人们承认MLIP有时会显示出对学习数据库中未包含的系统的可传递性。在最坏的情况下,MLIP SO-WELL拟合到其学习数据库中,可以在其外观察到非物理行为。为了解决此问题,主要建议是定期检查电位的准确性,因为进行了机器学习分子动力学模拟并改善MLIP“ fly the Fly” [38 - 40]。,据我们所知,这种方法的这种缺陷从未经过定量调查,而在被用户和开发人员承认的同时。
Martini 粗粒度力场 Martini 3 的最新重新参数化提高了该模型在预测分子动力学模拟中的分子堆积和相互作用方面的准确性。在这里,我们描述了如何在 Martini 3 框架内精确参数化小分子,并提供了一个经过验证的小分子模型数据库。我们特别关注脂肪族和芳香族环状结构的描述,这些结构在溶剂和药物等小分子或蛋白质和合成聚合物等大分子的构成块中普遍存在。在 Martini 3 中,环状结构由使用更高分辨率粗粒度颗粒(小颗粒和微小颗粒)的模型描述。因此,本数据库构成了校准新 Martini 3 小颗粒和微小颗粒尺寸的基石之一。这些模型表现出出色的分配行为和溶剂性能。还捕获了不同本体相之间的可混溶性趋势,从而完成了参数化过程中考虑的一组热力学性质。我们还展示了新的珠子尺寸如何能够很好地表示分子体积,从而转化为更好的结构特性,例如堆叠距离。我们进一步介绍了设计策略,以构建复杂度更高的小分子的 Martini 3 模型。
摘要:我们使用基于神经网络力场的平衡分子动力学模拟探索了含有缺陷的双层PTST的声子传输性能。缺陷证明在降低结构的热导率方面非常有效,并且花缺陷具有与双重空缺相当的效果特别强大。此外,由于在高温下结构不稳定性而导致的结构的电导率表现出异常的温度依赖性。,我们通过预测的状态声子密度来研究对缺陷围绕正常模式的失真,并找到包括局部模式和蓝移的多种现象。■引言二维(2D)晶体通常具有缺陷,可以通过各种方法在合成过程中意外或故意引入它们。1研究这些缺陷对2D材料中声子传输的影响不仅对于在现实条件2,3中理解热传输物理学至关重要,还要为诸如热电和光电设备等应用找到最佳候选系统,以及热晶体管。1,4
摘要:与石墨烯和石墨相互作用的准确模拟模型对于纳米流体应用很重要,但是现有的力场产生的接触角却大不相同。我们对实验文献的广泛审查揭示了报道的石墨烯 - 水接触角度的极端变化以及石墨 - 水接触角的聚类 - 与新鲜去角质(60°±13°)的组和非腐蚀性去除的石墨表面。与实验结果的平均结果相一致,相对于无限距离切割极限的60°石墨 - 水接触角度优化了经典力场的碳 - 氧性分散能。也得出了有限截止的相互作用力场。引入了平面平衡模拟的压力张量的接触角方法,它理想地适合石墨和石墨烯表面。我们的方法论广泛适用于任何液体表面组合。
原子特征 大小(38) 描述 原子符号 11 [UNK、H、C、N、O、F、P、S、Cl、Br、I] (one-hot) 键度 6 共价键数 [0、1、2、3、4、5] (one-hot) 形式电荷 7 [-3、-2、-1、-0、1、2、3] (one-hot) 杂化 8 [未指定、s、sp、sp2、sp3、sp3d、sp3d2、其他] (one-hot) 手性 4 [未指定、四面体 CW、四面体 CCW、其他] (one-hot) 环 1 原子是否在环中 [0/1] (one-hot) 芳香性 1 原子是否属于芳香系统 [0/1] (one-hot) 键特征 大小(12) 描述 键类型 4 [单键、双键、三键、芳香] (one-hot) 共轭1 键是否为共轭键 [0/1] (one-hot) 环 1 键是否在环中 [0/1] (one-hot) 立体类型 6 [StereoNone, StereoAny, StereoZ, StereoE, Stereocis, Stereotrans] (one-hot)
1捷克科学学院生物物理学研究所,Královopolská135,612 00 Brno,捷克共和国Brno 2捷克高级技术研究所,Catrin,Catrin,Palacký大学,K例科夫斯科夫斯科夫斯科夫斯科佛511/8 Ostrava,17。Listopadu2172/15,708 00 Ostrava-Poruba,捷克共和国和联合优先的作者。*对应作者:Miroslav Krepl电子邮件:krepl@ibp.cz摘要由RNA和DNA链形成的抽象混合双螺旋(通常称为混合双链体或杂交),在转录和反向转录等生物学过程中至关重要。它们对于他们在CRISPR基因编辑和纳米技术中的应用也很重要。,尽管它们具有重要意义,但杂种很少以原子分子动力学方法进行建模,并且没有基准研究系统地评估了力场的性能。在这里,我们介绍了使用现代和常用的成对添加剂和可极化的核酸力场的杂种进行广泛的基准研究。我们的发现表明,任何可用的力场选择都没有准确地重现混合动力的所有特征结构细节。琥珀色力场无法填充DNA链的C3'-endo(北)冰球和低估的倾斜度。charmm力场准确地描述了C3'-endo冰球和倾斜度,但显示了基对的不稳定性。可极化的力场与准确再现螺旋参数的努力。某些力场组合甚至表现出RNA和DNA参数之间的明显冲突。在这项工作中,我们对混合DNA/RNA双链体的力场性能进行了坦率的评估。我们为选择可利用的力场组合提供指导,并突出显示潜在的陷阱和获得最佳性能的最佳实践。引言基因表达过程不可避免地涉及转录过程中混合RNA和DNA双链体(杂种)的形成,而新鉴定的RNA链暂时将基础与DNA模板配对。1在逆转录期间发生相反的过程,
根据相对论,理想时钟的读数被解释为沿着它在时空中的经典轨迹所经过的固有时。相反,量子理论允许将许多同时的轨迹与一个量子钟关联起来,每个轨迹都有适当的权重。在这里,我们研究叠加原理如何影响简单时钟(一个衰减的两能级原子)观察到的引力时间膨胀。将这样的原子置于位置叠加中使我们能够分析量子贡献对自发辐射中经典时间膨胀的表现。特别地,我们表明,在引力场中分离波包的相干叠加中制备的原子的发射率不同于这些波包的经典混合中原子的发射率,这引起了量子引力时间膨胀效应。我们证明了这种非经典效应也表现为原子内部能量的分数频率偏移,该偏移在当前原子钟的分辨率范围内。此外,我们还展示了空间相干性对原子发射光谱的影响。